Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000		00000	O

Photon splitting corrections to soft-photon resummation

Lois Flower

Institute for Particle Physics Phenomenology Durham University

lois.flower@durham.ac.uk

Based on [2210.07007] with Marek Schoenherr

15th December 2022

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

0/16

IPPP

Motivation ●0	Algorithm 0000	Lepton dressing	Results 00000	Conclusions 0

Introduction

- Decay of vector bosons is an important part of precision measurements
- QED corrections to leptonic final states are needed
- Either: QED parton shower in analogy to QCD
- Or: soft-photon resummation (YFS) Yennie, Frautschi, Suura '61
- Implemented in SHERPA with hard real and virtual corrections up to NLO EW + NNLO QED Krauss, Schönherr '08
- Initial-state YFS resummation also implemented in SHERPA Krauss, Price, Schönherr '22

Lois Flower

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Motivation ○●	Algorithm 0000	Lepton dressing	Results 00000	Conclusions 0

Photon splittings

- All charged particles are massive within the YFS framework, which regulates collinear divergences
- \blacktriangleright Hence $\gamma \to f \overline{f}$ is IR finite but logarithmically enhanced for light flavours
- ▶ $\gamma \rightarrow e^+e^-$ will induce the largest corrections
- We implemented a photon splitting algorithm which allows $\gamma \rightarrow f\bar{f}$ to occur, where $f = e, \mu, \tau, \pi, K$
- ▶ Note that we treat hadrons as the DoF instead of quarks since $E_{\gamma} \lesssim$ hadronisation scale

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Photon splitting algorithm

- One-step parton shower subsequent emissions factorise when ordered in a scale variable t
- Input: primary charged particles and coherently emitted soft photons - works for any setup given there is something to emit a photon and something to absorb recoil
- We reconstruct the scale t_{start} (GeV²) from the input
- ► Then calculate probabilities for each photon to split and let all possible splittings compete until cutoff $t = 4m_e^2$
- Could be extended to let newly produced charged particles radiate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで…

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	○●○○		00000	0

Photon splitting algorithm cont'd

- What should we use as the ordering variable?
- $t = k_T^2$ for reconstructing starting scale $(f \to f\gamma)$
- $t = q^2$ for photon splittings $(\gamma \rightarrow f\bar{f})$
- We can always reinterpret this way!

4/16

IPPP

Motivation	Algorithm ○○●○	Lepton dressing	Results 00000	Conclusions O

Secondary flavour distribution for $Z \rightarrow e^+e^-$

 Subsequent pair production decreases P(2) ~ P(1)²

 Flavour suppression
 ~ log(m)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

5/16

IPPP

Motivation	Algorithm 000●	Lepton dressing	Results 00000	Conclusions O

Angular structure of photon splitting corrections

- ▶ On-shell $Z \rightarrow e^+e^-$
- For IR safety, $E_{\gamma} > 0.1 \text{MeV}$
- Hard or wide-angle photons are more likely to split than soft or collinear ones
- At small ∆⊖, no difference in multiplicity
- At larger ΔΘ, we observe particles other than photons
- The majority of these are electrons

6/16 IPPP

Lepton definitions

- Massive bare leptons are IR safe but experimentally difficult for electrons
- Electromagnetic calorimeter measures electrons and photons very similarly, and collinear electrons are difficult to distinguish
- Usual practice: define a cone around a primary lepton, absorb all photons within its radius
- ▶ We will show this is very sensitive to higher-order corrections, especially $\gamma \rightarrow e^+e^-$ which gives the largest mass enhancement

Motivation	Algorithm	Lepton dressing	Results	Conclusions
	0000	○●○○	00000	O

Rethinking lepton definitions

- For massless leptons, cone dressing with only photons is problematic
- Because we exclude real
 \ell + \ell -, there is nothing to
 cancel the virtual
 collinear singularity
- ► For massive leptons, there are contributions ~ log (m_ℓ)

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000	○●○○	00000	O

Rethinking lepton definitions

- For massless leptons, cone dressing with only photons is problematic
- Because we exclude real
 \ell + \ell -, there is nothing to
 cancel the virtual
 collinear singularity
- ► For massive leptons, there are contributions ~ log (m_ℓ)

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000	○○●○	00000	0

Flavour-aware lepton dressing

We consider the following schemes:

f_{dress} = {γ}
 f_{dress} = {γ, e}
 f_{dress} = {γ, e, π, K}
 f_{dress} = {γ, e, π, K, μ, τ}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

9/16

IPPP

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000	○○●○	00000	0

Flavour-aware lepton dressing

We consider the following schemes:

 $f_{dress} = \{\gamma\}$ $f_{dress} = \{\gamma, e\}$ $f_{dress} = \{\gamma, e, \pi, K\}$ $f_{dress} = \{\gamma, e, \pi, K, \mu, \tau\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

9/16

IPPP

Lois Flower

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000	000●	00000	0

Aside: sequential lepton dressing

- Similarities with QCD jets & ability to distinguish flavour
- ► Flavour-k⊥ algorithm?
- Future work only this would not be backwards-compatible

IPPP

Lois Flower

Dilepton invariant mass for on-shell $Z ightarrow e^+e^-$

- Primary electrons identified using energy
- Small recoil effect on bare primary leptons visible below Z mass
- Reference is YFS (photon emission corrections only)

ヨト ヨヨ のへの

11/16

IPPP

Lois Flower

Motivation	Algorithm 0000	Lepton dressing	Results 0●000	Conclusions 0

Dilepton invariant mass for on-shell $Z \rightarrow e^+e^-$

- Distance measure is $\Delta \Theta_{\text{dress}} = ((\Delta \theta)^2 + (\Delta \phi)^2)^{1/2}$
- Left: small dressing cone
- Upper ratio plot wrt. YFS (photon emission corrections only)
- Lower ratio plot wrt. YFS + photon splittings dressed with photons and electrons

▲ ∃ ▶ ∃ | = √Q ∩

< < >> < <</>

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000		0●000	O

Dilepton invariant mass for on-shell $Z \rightarrow e^+e^-$

Lois Flower

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000		00●00	0

- Reference is YFS (photon emission corrections only)
- No significant correction without improved statistics

글 🔊 그리는 👘

13/16

IPPP

Lois Flower

- Distance measure is $\Delta R_{\text{dress}} = ((\Delta \eta)^2 + (\Delta \phi)^2)^{1/2}$
- Left: small dressing cone
- Correction from $\gamma \rightarrow f\bar{f}$ now statistically significant due to recombination of momenta
- Upper ratio plot wrt. YFS
- Lower ratio plot wrt. YFS + photon splittings dressed with photons and electrons

・ロト ・ 日本 ・ ヨト ・ ヨート ・ シック

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000	0000	000●0	0

Lois Flower

- Include light charged hadrons in dressing
- Does this work in a hadron collider environment?
- Left: small dressing cone no further benefit
- Right: larger dressing cone detrimental

글 🔊 🖂 글 🔁 🚽

15/16

IPPP

Lois Flower

Motivation	Algorithm	Lepton dressing	Results	Conclusions
00	0000	0000	0000●	0

Lois Flower

IPPP

Conclusions and outlook

- We introduced an automated method for including photon splitting corrections to the YFS soft-photon resummation in the event generator SHERPA
- ▶ The correction to the bare dilepton invariant mass is up to 2% for $Z \rightarrow e^+e^-$ and less than 1% for Drell-Yan
- The same correction for photon-dressed leptons is highly dependent on the dressing cone size and is >1% for standard cone sizes
- By introducing novel flavour-aware dressing strategies, we limit these corrections and reduce cone size dependence
- Both the photon splitting method and the dressing strategies are general and applicable to a wide range of setups

Lois Flower

Backup: Comparison with Photos: $Z \rightarrow e^+e^-$

Lois Flower

Backup: Comparison with Photos: $Z \rightarrow e^+e^-$

Lois Flower

Backup: Comparison with Photos: $Z \rightarrow e^+e^-$

Lois Flower

Backup: Dilepton invariant mass for $pp \rightarrow e^+e^-$

Lois Flower

Backup: Dressed lepton charge

Lois Flower

Backup: Dressing cone size dependence

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼| 될 · 의 ۹ ℃ 6/10

Lois Flower

Backup: Energy density of a dressed lepton

Lois Flower

Backup: The YFS soft-photon resummation

$$\mathrm{d}\Gamma^{\mathsf{YFS}} = \mathrm{d}\Gamma_0 \cdot e^{\alpha Y(\omega_{\mathsf{cut}})} \cdot \sum_{n_\gamma=0}^{\infty} \frac{1}{n_\gamma!} \left[\prod_{i=1}^{n_\gamma} \mathrm{d}\Phi_{k_i} \cdot \alpha \, \tilde{S}(k_i) \,\Theta(k_i^0 - \omega_{\mathsf{cut}}) \cdot \mathcal{C} \right]$$

- Y(ω_{cut}) is the YFS form factor containing soft-photon logarithms
- \tilde{S} is the eikonal (soft emission effects)
- C corrects for hard-emission effects up to a given order
- \blacktriangleright YFS contains no description of charged particle production, $\gamma \rightarrow f \overline{f}$

000000000

IPPP

Backup: Splitting functions

$$\begin{split} S_{s_{\widetilde{ij}}(\widetilde{k}) \to s_i \gamma_j(k)} &= - \mathsf{Q}_{\widetilde{ij}\widetilde{k}}^2 \; \alpha \; \left[\frac{2}{1 - z + zy} - \frac{\widetilde{v}_{\widetilde{ij},\widetilde{k}}}{v_{ij,k}} \left(2 + \frac{m_i^2}{p_i p_j} \right) \right] \\ S_{f_{\widetilde{ij}}(\widetilde{k}) \to f_i \gamma_j(k)} &= - \mathsf{Q}_{\widetilde{ij}\widetilde{k}}^2 \; \alpha \; \left[\frac{2}{1 - z + zy} - \frac{\widetilde{v}_{\widetilde{ij},\widetilde{k}}}{v_{ij,k}} \left(1 + z + \frac{m_i^2}{p_i p_j} \right) \right] \\ S_{\gamma_{\widetilde{ij}}(\widetilde{k}) \to s_i \overline{s}_j(k)} &= S_{\gamma_{\widetilde{ij}}(\widetilde{k}) \to f_i \overline{f_j}(k)} = - \mathsf{Q}_{\widetilde{ij}\widetilde{k}}^2 \; \alpha \; \left[1 - 2z(1 - z) - z_+ z_- \right] \end{split}$$

Catani et al. '02, Dittmaier et al. '08, Schumann, Krauss '08

Lois Flower

Backup: Leptonic W decay

- ► The W is charged and the neutrino is not, so instead of an FF dipole we have an FI dipole W ℓ
- Large W mass suppresses photon emissions, so neglect it as an emitter
- Modify kinematic variables and splitting functions we keep the W eikonal term

Basso et al. '16

IPPP