Searching for Right Handed Neutrinos using same sign leptons at ILC

Jurina Nakajima, Daniel Jeans^A, Arindam Das^B, Keisuke Fujii^A

SOKENDAI, KEK^A, Hokkaido Univ.^B

arXiv:2203.06929

S

ND

Ε

Motivation and introduction

The Right Handed Neutrino (RHN) can address the following big questions

- Why does matter dominate anti-matter in our universe?
- Do quarks and leptons unify?
- Why is neutrino mass so small?

RHN is assumed to be

minimal U(1)_{B-L} model

 $G_{B-L} \equiv SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

RHN pair production

Study flow

jurina@post.kek.jp

ILC 500

Benchmark points @ ILC 500

• Pol(e⁻, e⁺) = (-0.8, +0.3), (+0.8, -0.3): $\mathcal{L} = 1600 \, [\text{fb}^{-1}]$

• Pol(e⁻, e⁺) = (-0.8, -0.3), (+0.8, +0.3): $\mathcal{L} = 400 \, [\text{fb}^{-1}]^{-1}$

M _N [GeV] RHN mass	Mz [,] [TeV] Z'mass	g1' U(1) _{B-L} coupling	V _{eN} ² mixing angle	$BR(N \rightarrow eW)$	σ_{LR} [fl 100% po	σ_{RL} o] larisation
100	7	1	0.003	0.44	0.55	0.71
150	7]	0.003	0.43	0.36	0.45
200	7	1	0.003	0.30	0.14	0.16
225	7	1	0.003	0.29	0.046	0.0052

▶ minimal U(1)_{B-L} model

▶ ILC 500 with initial state radiation (ISR) and beamstrahlung (BS)

Analysis tool and signal + backgrounds

Cut conditions to select signal events - I

ILC 500 with ISR / BS

 $Pol(e^{-}, e^{+}) = (+0.8, -0.3)$

Reconstruction methods

Choose combination with minimum F₁,**F**₂

jurina@post.kek.jp

Signal mass cut

• ILC 500 with ISR / BS • **Pol(e⁻, e⁺) = (-0.8, +0.3)** $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

For each M_N , mass window M_N -10, M_N +15 [GeV]

Assume background distribution is flat 20 (eLpR) and 3 (eRpL) background events remain in mass window

Results

	M _N [GeV]	Ns # of Signal After cut	N _B # of BG After cut	$\frac{N_S}{\sqrt{N_B + N_S}}$ Significance	<u>σ⁹⁵</u> σ ₀
	100	53		6.25	0.21
LR 80,30	150	52		6.18	0.21
	200	18	20.12	2.95	0.61
	225	5		1.18	1.8
	100	66		7.98	0.0092
RL	150	63	2.24	7.77	0.097
80,30	200	21	3.24	4.29	0.29
	225	6		1.99	1

jurina@post.kek.jp

Exclusion plot on cross-section

Exclude benchmark points and cross-sections up to 10x smaller

Summary of ILC 500 case

☆ We analyze "RHN pair production" by full simulation at ILC500.

☆ 4 fermion semileptonic processes are dominant backgrounds. Background is mostly removed, 20(eLpR) and 3(eRpL) events remain.

☆ Exclude benchmark points and cross-sections up to 10x smaller

Conclusion:

Can use same sign lepton signature to set powerful limits on RHN at ILC!

jurina@post.kek.jp

ILC 250

Benchmark points @ ILC 250

Pol $(e^+, e^-) = (-0.8, +0.3), (+0.8, -0.3) : \mathcal{L} = 900 \,[\text{fb}^{-1}]$ Pol $(e^+, e^-) = (-0.8, -0.3), (+0.8, +0.3) : \mathcal{L} = 100 \,[\text{fb}^{-1}]$

M _N [GeV] RHN mass	Mz [,] [TeV] Z'mass	g]' U(1) _{B-L} coupling	$ \begin{array}{c} V_{eN} ^2 \\ \text{mixing} \\ \text{angle} \end{array} \end{array} BR(N \rightarrow eW) $		<i>σ_{LR}</i> [fb] 100% pola	σ_{RL} arisation
85	7]	0.003	0.50	0.048	0.089
95	7	7	0.003	0.48	0.033	0.060
100	7	7	0.003	0.44	0.026	0.046
110	7	7	0.003	0.40	0.012	0.021
120	7]	0.003	0.37	0.0021	0.0035

▶ minimal U(1)_{B-L} model

ILC 250 with initial state radiation (ISR) and beamstrahlung (BS)

Preliminary results

ILC 250 with ISR / BS

• $Pol(e^{-}, e^{+}) = (+0.8, -0.3)$

Isolation cut == Isolated e # = 2 && Isolated γ , μ # = 0

Next step

 \approx I add background events for these signal events. Ex) 4 and 6 fermions events in the final state

-> Shinichi.K is preparing minidst files of backgrounds for me.

 \approx I need to consider "cut condition".

☆ Finding the exclusion limit on cross-section

Benchmark points

• $Pol(e^{-}, e^{+}) = (-0.8, +0.3), (+0.8)$	B, –0.3): $\mathcal{L} = 1600 [\mathrm{fb}^{-1}]$
--	--

•	Pol(e⁻,	e+) = ((-0.8,	-0.3),	(+0.8,	+0.3):	$\mathcal{L} =$	400	fb^{-1}	
---	---------	---------	--------	--------	--------	--------	-----------------	-----	--------------------	--

M _N [GeV] RHN mass	Mz [,] [TeV] Z' mass	g₁' U(1) _{B-L} coupling	V _{eN} ² mixing angle	BR (<i>N</i> → <i>eW</i>)	$\sigma(e_L^- e_R^+ \to NN)$ 100% polarization [fb]	Event # at ILC500 [4000fb ⁻¹]
100	7	1	0.003	0.44	0.71	1261
150	7	1	0.003	0.33	0.45	229
200	7	1	0.003	0.30	0.16	131
225	7]	0.003	0.29	0.052	18

▶ minimal U(1)_{B-L} model

▶ ILC 500 with initial state radiation (ISR) and beamstrahlung (BS)

Signal events

ILC250

Signal process:

Model parameters

$$\sigma = \sigma(ee \to NN) \times (BR(N \to e^{\pm}W^{\mp}))^2$$
$$\propto g_1'^4 \frac{1}{M_{Z'}} (BR(N \to e^{\pm}W^{\mp}))^2 \equiv \alpha$$

jurina@post.kek.jp

Model : minimal U(1)B-L

Signal

jurina@post.kek.jp

Isolated e,y,µ

• Pol(e⁻, e⁺) = (+0.8, -0.3)

jurina@post.kek.jp

Distribution of Isolated electron energy

- ILC 500 with ISR / BS
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
- Pol(e⁻, e⁺) = (+0.8, −0.3)
- Isolated e is same sign ($e_1 \times e_2 = 1$)

Distribution of COS_{bisoe}

- ILC 500 with ISR / BS
 Pol(e⁻, e⁺) = (+0.8, -0.3)
- Isolated e # = 2 && Isolated $\gamma \# = 0$ && Isolated $\mu \# = 0$ Isolated e is same sign (e₁×e₂=1)

4 fermions semi leptonic processes in t-channel \rightarrow distributed in lcos θ_{isoe} | ~ 1

Distribution of y12 (Durham)

- ILC 500 with ISR / BS
 Pol(e⁻, e⁺) = (+0.8, -0.3)
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
- Isolated e is same sign ($e_1 \times e_2 = 1$)

Distribution of Pmiss

ILC 500 with ISR / BS

 $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$

Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0 Isolated e is same sign ($e_1 \times e_2 = 1$)

COSθPmiss VS Magnitude of missing momentum Pmiss ILC 500 with ISR / BS

 $P_{miss} < 100 \&\&(P_{miss} < 40 || |cos \theta_{Pmiss}| > 0.95)$

Cut flow (eRpL)

ILC 500 with ISR / BS

• Pol(e⁻, e⁺) = (+0.8, -0.3) $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

ILD work in progress

		Expecte	ed signal		Expected background						
	M _N =100	M _N =150	M _N =200	M _N =200 M _N =225		4f_singleW _semileptonic	4f_singleZee_ semileptonic	6f_ttbar 2electrons	6f_ttbar 1electron	6f_ttbar 0electron	
No cut	558	394	143	45	3925	258648	612455	7100	56233	4894	
e _{iso} #=2 && γ _{iso} #=0 &&	420	343	126	40	1935	9426	249000	6142	1295	127	
Same sign (e _{iso1} ×e _{iso2} = 1)	346	115	81	12	1231	7210	140176	3911	870	94	
E _{iso} < 200 [GeV]	171	114	41	12	14	3741	3294	2	177	19	
-0.95< cosθ _{isoe} < 0.95	158	103	37	11	3	1324	475	1	113	12	
IsolatedLepTa gging _{min} > 0.9	96	91	32	10	0	198	101	0	15	1	
log ₁₀ (y12) > -1	88	90	30	9	0	199	86	0	6	0	
$P_{miss} < 100 \&\&$ ($P_{miss} < 40 II$ $I cos \theta_{Pmiss} I >$ 0.95)	86	84	29	9	0	4	15	0	2	0	

jurina@post.kek.jp

Signal mass cut

• ILC 500 with ISR / BS • **Pol(e⁻, e⁺) = (+0.8, -0.3)** $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

For each M_N , mass window M_N -10, M_N +15 [GeV]

Assume background distribution is flat 20 (eLpR) and 3 (eRpL) background events remain in mass window

Results

	M _N [GeV]	# of Signal After cut	# of BG After cut	Signal Significance	σ ₀ [fb] Initial benchmark	σ ⁹⁵ [fb] 95% exclusion limit	σ ⁹⁵ σ ₀	α ⁹⁵ [TeV ⁻⁴]
	100	53.64		6.25	0.55	0.12	0.21	3.83E-05
LR 80,30	150	52.73		6.18	0.36	0.076	0.21	2.96E-05
	200	20.12 200 18.30		2.95	0.14	0.086	0.61	7.57E-05
	225	5.51		1.18	0.046	0.085	1.8	2.21E-04
	100	66.75		7.98	0.71	0.065	0.092	1.69E-05
RL	150	63.41	2.04	7.77	0.45	0.043	0.097	1.35E-05
80,30	200	21.23	3.24	4.29	0.16	0.047	0.29	3.57E-05
	225	6.077		1.99	0.052	0.052	1	1.21E-04

jurina@post.kek.jp

Exclusion plot on U(1)_{B-L} parameters

Translate to the U(1)_{B-L} model parameters

The benchmark points isn't excluded only at $M_N = 225 \text{ GeV}$

eLpR case

Cut flow (eLpR)

• ILC 500 with ISR / BS

• Pol(e⁻, e⁺) = (-0.8, +0.3) $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

ILD work in progress

		Signal	Entries		Background Entries						
	M _N =100	M _N =150	M _N =200	M _N =225	eeqqqq	4f_singleW _semileptonic	4f_singleZee_ semileptonic	6f_ttbar 2electrons	6f_ttbar 1electron	6f_ttbar 0electron	
No cut	554	394	143	45	11898	2825010	699475	16425	129283	11028	
e _{iso} #=2 && γ _{iso} #=0 &&	347	343	79	40	4721	90818	162774	9422	2271	201	
Same sign (e _{iso1} ×e _{iso2} = 1)	176	115	39	12	39	46138	3800	8	439	25	
E _{iso} < 200 [GeV]	175	114	39	12	39	41319	3557	8	439	25	
-0.95< cosθ _{isoe} < 0.95	156	103	36	11	13	17506	623	4	266	15	
IsolatedLepTa gging _{min} > 0.9	94	91	31	10	2	2632	128	1	50	0	
log ₁₀ (y12) > -1	94	90	31	9	2	2632	128	1	50	0	
P _{miss} < 100 && (P _{miss} < 40 II Icosθ _{Pmiss} I > 0.95)	84	84	28	9	1	79	30	0	9	0	

jurina@post.kek.jp

Electron Charge

- ILC 500 with ISR / BS
- Pol(e^{-}, e^{+}) = (-0.8, +0.3)

• Isolated e # = 2 && Isolated $\gamma \# = 0 \&\&$ Isolated $\mu \# = 0$

The 77th General Meeting of ILD Physiscs Subgroup

e⁺

е

N

Z

Distribution of IsolatedLepTagging

- ILC 500 with ISR / BS
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
- Pol(e⁻, e⁺) = (-0.8, +0.3)
- Isolated e is same sign ($e_1 \times e_2 = 1$)

Isolated e,y,µ

ILC 500 with ISR / BS •

 $Pol(e^{-}, e^{+}) = (-0.8, +0.3)$

jurina@post.kek.jp

Distribution of Isolated electron energy

- ILC 500 with ISR / BS
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
- Pol(e⁻, e⁺) = (−0.8, +0.3) ·
- Isolated e is same sign ($e_1 \times e_2 = 1$)

Distribution of COS_{bisoe}

- ILC 500 with ISR / BS Pol(e⁻, e⁺) = (-0.8, +0.3)
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0 Isolated e is same sign (e₁×e₂=1)

 $\cos\theta_{isoe}$ Nomalized M_N=100 GeV BG_6f_ttbar_2e — BG_eeqqqq M_N=150GeV BG 6f ttbar 1e - BG_4f_sw_sl 10⁴ work in progres M_N=200 GeV ---- BG_4f_sze_sl BG 6f ttbar 0e ∕I∾=225 Ge\ 10^{3} 10^{2} 10 10^{-1} 10^{-2} -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0 0.8 -1 $\cos\theta_{isoe}$ $-0.95 < \cos \theta_{isoe} < 0.95$

4 fermions semi leptonic processes in t-channel \rightarrow distributed in lcos θ_{isoe} l ~ 1

Distribution of y12 (Durham)

- ILC 500 with ISR / BS
 Pol(e⁻, e⁺) = (-0.8, +0.3)
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
 - Isolated e is same sign ($e_1 \times e_2 = 1$)

log(y12)

Distribution of y12 (Durham)

- ILC 500 with ISR / BS
 Pol(e⁻, e⁺) = (-0.8, +0.3)
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0
 - Isolated e is same sign ($e_1 \times e_2 = 1$)

log(y12)

Distribution of Pmiss

- ILC 500 with ISR / BS
 Pol(e⁻, e⁺) = (-0.8, +0.3)
- Isolated e # = 2 && Isolated γ # = 0 && Isolated μ # = 0 Isolated e is same sign (e₁×e₂=1)

4f and 6f background information

Cross section – BG

• ILC 500 with	n ISR / BS			:	:
(100%,100%)		eeqqqq		4f_singleW _semileptonic	4f_singleZee _semileptonic
	еехуух	xxxxee	ууууее	4f_sw_sl	4f_sze_sl
eLpR	1.64E+01	8.71E-02	1.45E-01	7.81E+03	1.96E+03
eRpL	3.64	4.62E-02	5.31E-02	2.28E+01	1.73E+03
eLpL	6.63	3.38E-02	2.20E-02	7.53E+02	1.78E+03
eRpR	6.61	3.30E-02	1.97E-02	7.50E+02	1.78E+03

Cross section – BG

· ILC 500 with ISR / BS

(100%, 100%)	6f_ttbar											
	yyveev	yyvelv	yyvlev	ууvеух	yyxyev	yyvllv	yyvlyx	yyxylv	yyuyyu	ууиуус	уусууи	уусуус
eLpR	2.01E+01	3.96E+01	3.96E+01	1.17E+02	1.17E+02	7.87E+01	2.32E+02	2.31E+02	1.67E+02	1.64E+02	1.65E+02	1.63E+02
eRpL	7.56E+00	1.50E+01	1.50E+01	4.45E+01	4.45E+01	3.01E+01	8.91E+01	8.89E+01	6.45E+01	6.44E+01	6.41E+01	6.07E+01
eLpL	1.08E-01	1.89E-01		5.46E-01								
eRpR	1.09E-01		1.88E-01		5.42E-01							

Information associated with U(1)_{B-L} model

Current limits - Z' mass

SM like Z' coupling

01 (B 10 د 10 ATLAS Simulation --- Expected limit **ILC250** 0.100 √s = 14 TeV, 3000 fb⁻¹ Expected ± 1σ Expected $\pm 2\sigma$ $Z' \rightarrow ee$ 0.010 10⁻² —Ζ'_{33M} $<\mu> = 200$ $\sigma(e^+e^- \rightarrow N^i N^i)$ [fb] 0.001 10⁻³ 10-4 10⁻⁴ minimal B-L model MN_{1,2,3} = 50 GeV 10-5 10⁻⁵ MN_{1,2,3} = 100 GeV Alternative B-L model 10-6 10⁻⁶ $MN_{1,2} = 50 \text{ GeV}$ $MN_{1,2} = 100 \text{ GeV}$ 10-7 10⁻⁷L 5 6 3.56.5 7 7.55.5M_z [TeV] m_{Z'}[TeV] ATLAS-TDR-LHCC2017-2018 arXiV[1812.11931]

HL-LHC prospects limit for U(1)_{B-L} model

The heavier Z' mass less constrained by LHC

jurina@post.kek.jp

Current limits IV_{eN}I²

IV_{eN}I² : the "light-heavy" neutrino mixing matrix

https://arxiv.org/pdf/1802.02965.pdf

Current Limits and prospects - Z' mass,g1'

arXiv:2203.06929