

Sc-ECAL Status and Outlook

W. Ootani ICEPP, Univ. of Tokyo

on behalf of Sc-ECAL group

ILC Strategy Meeting, May. 3rd, 2022 CR data

SHINSHU UNIVERSITY

ILD R&D group

University of Tsukuba

CEPC R&D group

Institute of High Energy Physics Chinese Academy of Sciences

SHINSHU

UNIVERSITY

\rightarrow Already with a scope beyond ILD

ILD R&D group

University of Tsukuba

CEPC R&D group

Institute of High Energy Physics Chinese Academy of Sciences

ECAL

m×5mm×t2mm) read out by SiPM

- virtual segmentation of 5×5mm² by strips aligned alternately in horizontal and vertical orientations
- Significant reduction of readout channels($10^8 \rightarrow 10^7$) retaining performance.
 - Cost reduction
 - Power consumption reduction \rightarrow advantageous especially for CE

Jet energy resolution (MC)

Brief History

•Physics prototype

- Scintillator ($45 \times 10 \times 3 \text{ mm}^3$) readout by WLS fibre+SiPM
- Demonstrated good performance (energy resolution and linearity) using 2-32GeV electron at Fermilab

(%) ш > G E 18 cm

18 cm

• Technological prototype: single layer

- Scintillator strip ($45 \times 5 \times 2 \text{ mm}^3$) directly coupled to SiPM
- Strips are assembled on PCB with integrated readout electronics ("EBU")
- 144 strips/EBU readout by 4 ASICs (SPIROC2b)

We are here

• Technological prototype: full layer

- Joint R&D with CEPC-ECAL group
- Scintillator strip ($45 \times 5 \times 2 \text{ mm}^3$) with SiPM
- 32 layers, ~ $23.4 X_0$
- 210ch /EBU

•Large technological prototype of Sc-ECAL

- Jointly developed by R&D groups for CEPC and ILD
- Full layers (32 layers)
 - Detection layer of 210×225mm² with 210 scintillator-strips
 - 30 layers with single SiPM readout
 - 2 layers with double SiPM readout
 - Absorber plate (3.2mm-thick 15%-85% Cu-W alloy)
 - Total material thickness $23.4 X_0$

Large Prototype

Large prototype

•Super-layer

Large Prototype

Mechanical structure

- Mechanical structure with $17 \times$ slots for super-layer modules
- Whole setup can be rotated by 90° for cosmic ray test
- Air-cooling fans at both sides

ntations

Large Prototype DAQ

Data Collection of Sc-ECAL

Large Prototype Commissioning

•No beam test performed yet due to pandemic

• Sc-ECAL/CEPC-AHCAL combined test beam at CERN SPS in October 2022

•Long LED run (~1 month)

- SiPM calibration (gain, cross-talk, after-pulsing)
- Electronics calibration
- Stability test

•Long cosmic ray run (~3 month)

- MIP calibration
- Stability test
- Performance study
 - Detection efficiency, position resolution
 - Study with cosmic-ray induced shower

Prototype rotated by 90° for cosmic-ray test

Large Prototype Performance

•Performance measurement with cosmic ray track

Detection efficiency

Position resolution

CR event display

•Long-term stability

- - - \leftrightarrow 1-2%/year @T2K ND280/INGRID

layer 4 layer 5

layer 16 layer 17

Wataru OOTANI "Sc-ECAL Status and Outlook", ILD Strategy Meeting, May 3rd, 2022

10

Date

15

5

20

Large Prototype

Performance

Timing capability recognised as additional value by Sc-E[^]

- Particle ID for charged hadron to cover inaccessible momentum
 Rejection of File prof Principal BG
- Rejection of slow neutron events
- Improve PFA performance

 $K^{\pm}/\pi^{\pm}/p^{\pm}/p^{\pm}$

Hit position resolution with double SiPM readout (Measured)

Timing

Effect of TOF (res. 50ps) on particle ID performance

Truth cluster TOF distribution of real photon and fake photon clusters (CEPC)

• 6x SiPM ($3 \times 3 \text{ mm}^2$, pixel pitch: $50 \,\mu\text{m}$)

• Expected $70 - 80 \, \text{ps}$ with ~100 photoelectrons

Properties	BC-418	BC-420	BC-422	BC-422Q	BC
Light Output ^{a)} (% Anthracene)	67	64	55	19	
Rise Time ^{a) b)} (ns)	0.5	0.5	0.35	0.11	
Decay $Time^{a}$ (ns)	1.4	1.5	1.6	0.7	
Peak Wavelength ^{a)} (nm)	391	391	370	370	
Attenuation $\text{Length}^{a)}$ (cm)	100	110	8	8	
Time Resolution ^{c)} (ps)	48 ± 2	51 ± 2	43 ± 2	66 ± 3	

Timing

series

configuration

C-404 68 0.71.8408 140_____

Wataru OOTANI "Sc-ECAL Status and Outlook", ILD Strategy Meeting, May 3rd, 2022

S

Study on dedicated timing layer

- Time resolution with standard strip-SiPM configuration: $300 400 \, \text{ps}$
- Dedicated timing layer with scintillator tile + larger SiPM under consideration
 - **Target resolution** ~ 50 ps (from MEG II experience)
 - Tile layer would also help mitigating ghost hit in strip layers

Test bench measurements

- Scintillator tile

Timing

More Realism in Simulation

error ratio

Realistic conditions to implement in simulation

- ✓ •SiPM saturation
- ✓ Hit position dependence of light yield
- Misalignment between strip and SiPM
 - Gap between strips (deal area)
 - ...

Position dependence of light yield

100

Jet energy resolution

150

S14160-1315PS

200

2.8

50

Remaining Challenges

Performance evaluation in beam test

- Standalone beam test at IHEP BSRF (leakage electron from synchrotron radiation k
- Combined beam test at CERN with Sc-ECAL and CEPC-AHCAL in Oct 2022

Engineering work for large scale production

- Scintillator production (injection moulding)
- Automated assembly system
- System for QC/QA
- \rightarrow More reliable cost estimate

Readout electronics

- Power pulsing operation
- Long slab
- Electronics dedicated for timing

Infrastructure design for ILD

Most urgent R&D items from CEPC viewpoint

- Low-power and high-performance SiPM readout ASIC
- Active cooling

No significant progress to address the issues

- No sufficient manpower and funding for both Chinese and Japanese sides
- Newcomers would be welcome in these area

Strip wrapping and assembly on EBU was done by hand (Shanghai Institute of Ceramic)

