29th Meeting of SRF Group in IDT/WG2

- ✓ Proposal for SRF Time-critical WPs
- ✓ Others (if any)

Attendees: A. Yamamoto, K. Umemori, S. Belomestnykh, M. Liepe, R.Geng, R. Rimmer, D. Delikaris, E. Cenni, L. Monaco, P. Burrows, S. Stapnes, Kirk

https://agenda.linearcollider.org/category/256/

WP-prime 1: SRF Cavity

(Scoping the Industrial-Production Readiness)

- Research with single-cell cavities to establish the best production process
 - ◆ Advanced Nb sheet production method
 - ◆ Advanced surface treatment recipe
- ◆ Globally common design compatible with High Pressure Gas Safety (HPGS) regulation
- ◆ 24 nine-cell cavities are to be developed for industrial-production readiness
 - ♦ 8 cavities (4 / batch) in each region
 - ◆ Production process optimized in each region encouraged
- ◆ RF performance/success yield to be examined (at least including 2nd pass)
 - ◆ 3rd pass to be examined if effective

Manufact	ure methods of	Nb FG-plate a	nd MG-disk
	Forging Nb ingot	Rolling Nb plate	Fine-Grain (FG) Nb plate Grain Size < 0.1 mm
Nb melting	• 2	→	
	MG: Aiming for clean, m	echanically stable, and cost-effe	ective SRF cavity production.
Niobium ingot (Raw material)	-	•	>
	Ingot, forged and annealed	Slicing image by wire-saw	A New Approach: Medium Grain (MG) Disc Grain Size < 1 mm

	# of cavities to be produced		
	Americas	Europe	JP/Asia
single-cell	2	2	2
nine-cell	8	8	8 (+ 12)

Cavity Production

Surface Process

Vertical Test = Cavity RF Test

Production process

WP-prime 2: Cryomodule (CM) design

(Scoping the CM Global Transfer and Performance Assurance)

- ◆ Unify cryomodule (CM) design with ancillaries, based on globally common drawings and data-base
- Establish globally compatible safety design to be approved by HPGS regulations individually authorized in each region.

	Americas	Europe	Japan/Asia
CM tech. design base	LELS-II	Euro-XFEL	ILC-TDR
HPGS regulation base	ASME	TÜV and EN	JP-HPGS act
ILC CM design	Common CM design globally adaptable to HPGS regulation in any regions		

WP-prime 3: Crab Cavity Development with down-selection

- ◆ RF property simulation to optimize cavity design
- ◆ Pre-down-selection to choose two primary candidates
- ◆ Development and evaluation of two prototype cavities
- ◆ Demonstration of synchronized operation with two prototypes
- ◆ Down-selection to choose final cavity design
- ◆ Cryomodule design based on final cavity design

two beamline distance $14.049m \times 0.014rad = 197mm$

Item	Recent specification (after TDR)	
Beam energy	125 GeV (e ⁻)	
Crossing angle	14 mrad	
Installation site	14 m from IP	
RF repetition rate	5 Hz	
Bunch train length	727 µsec	
Bunch spacing	554 nsec	
Operational temperature	2.0 K (?)	
Cavity frequency	1.3/3.9 GHz	
Total kick voltage	1.845/0.615 MV	
Relative RF phase jitter	0.023/0.069 deg rms (49 fs rms)	

Schedule of SRF (Crab/Steering-Panel) Group Meeting in IDT/WG2

Meeting #	Date	Contents
29	24/May	Proposal for SRF Time-critical WPs

Questions/Discussions/Comments (memorandum) @29th meeting

Translation by Kirk

- Proposal for Time-critical WPs
 - SC-magnet port can be changed to the coupler side (originally tuner port side).
 - KEK needs a lot of cavity drawings for HPGS, especially interfaces between different materials.
 - KEK and FNAL will have a meeting for this activity on June.