
WG2 SRF: WP3 Crab Cavities Design Review Workshop #2

Update for WG2

Peter McIntosh

UKRI-STFC Daresbury Laboratory

27th June 2022

Agenda for Meeting (GMT)

Wednesday 22nd June 2022

13:30	Introduction and Remit for the Workshop	Peter McIntosh (STFC)	5 min					
13:35	Specification Review	Peter McIntosh (STFC)	5 min					
Cavity Design Updates								
13:40	Elliptical/Racetrack	Graeme Burt (Lancaster University)	15 + 5 min					
14:00	RF Dipole (RFD)	Suba De Silva/Jean Delayen (ODU/JLab)	15 + 5 min					
14:20	Double Quarter Wave (DQW)	Silvia Verdu Andres (BNL/CERN)	15 + 5 min					
14:40	Wide Open Waveguide (WOW)	Binping Xiao (BNL)	15 + 5 min					
15:00	Quasi-waveguide Multicell Resonator (QMiR)	Andrei Lunin (FNAL)	15 + 5 min					
15:20	Preparations for Down-selection Review (Sept 27 th 2022)	Peter McIntosh (STFC)	10 min					
15:30	Meeting close							

Preparations for 2nd Design Workshop (22nd June 2022)

- Assess and compare CC EM designs, not likely finally optimised:
 - Cavity,
 - HOMs,
 - Couplers,
 - Multipacting,
 - Tuning.
- Clarifying then next steps to perform first CC down-selection on 27th Sept 2022:
 - All EM design aspects complete, including pressure stability and fabrication assessment.
 - Down-select 2 optimum CC designs for future prototype development (external review).
- Final CC down-selection, post-prototype validation at ~18-months later (Mar 2024).

Workshop Remit

- For WP3 teams to identify progress made with CC designs.
- Identify outstanding issues which may exist regarding specifications as defined (v13).
- Agree the cavity parameters to define for down-selection review finalise process today.

Specifications Update (v13)

Parameter		oec (After	10Hz Upgrade ^{1,2}	1 TeV CoM Spec ²		Spec ²		
Poom Energy (CoV) o	16	TDR) Upgrade ^{1,2}						
Beam Energy (GeV) e-		125	1.4		500			
Crossing Angle (mrad)			14					
Installation site (m from IP)		_	10	ı				
RF Repetition Rate (Hz)		5		4				
number of bunches		1312		2450				
Bunch Train Length (ms)		27	961	897				
Bunch Spacing (ns)		554		366 8.75 7.6				
Beam current (mA)	5	5.8		7.6				
Operating Temp (K)			2					
Cryomodule installation length (m)		3.25						
Horizontal beam-pipe separation (m)	0.1967	0.1967 (centre) ±0.0266 (each end of installation lengt			length)			
Cavity Frequency (GHz)	3.9	2.6	1.3	3.9	2.6	1.3		
Total Kick Voltage (MV)	0.615	0.923	1.845	2.5	3.7	7.4		
Max Ep (MV/m)		45 45						
Max Bp (mT)		80				80		
Amplitude regulation/cavity (% rms)		3.5 (for 2% luminosity drop)						
Relative RF Phase Jitter (deg rms)		0.069						
Timing Jitter (fs rms)		49 (for 2% luminosity drop)						
Max Detuning (Hz)		200 TBC		,				
Longitudinal impedance threshold (Ohm)								
Trasverse impedance threshold (MOhm/m) (X,Y)		48.8, 61.7						
Cavity field rotation tolerance/cavity (mrad rms)		5.2 (for 2% luminosity drop)						
Beam tilt tolerance (H and V) (mrad rms and urad rms)	am tilt tolerance (H and V) (mrad rms and urad rms) 0.35, 7.4 (for 2% luminosity drop)							
Minimum CC beam-pipe aperture size (mm)		>25 (same as FD magnets)						
Minimum Exraction beam-pipe aperture size (mm)		20						
Beam size at CC location (X, Y,Z) (mm,um,um)		0.97, 66, 300						
Beta function at CC location (X, Y) (m,m)			23200, 154	400				
CC System operation	assume CW-mode operation							

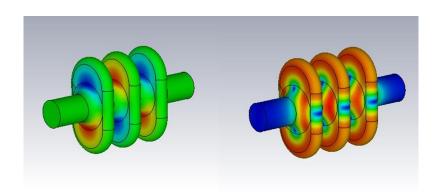
Updates from previous Design Review #1 meeting in Dec 2021

Preparations for Down-Selection Review Sept 27th 2022

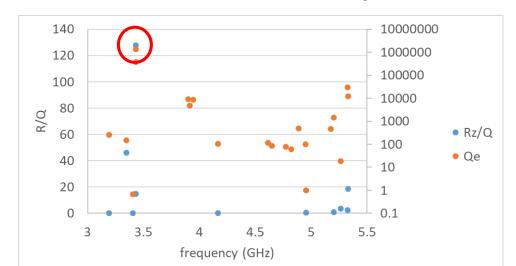
- Terms of Reference for the review to be developed (Myself, Akira and Kirk).
- Review panel membership to be determined and invitations solicited (Myself, Akira and Kirk):
 - Suggestions welcome from WP3 collaborators.
- Discussion of remaining requirements for all WP3 collaborators.

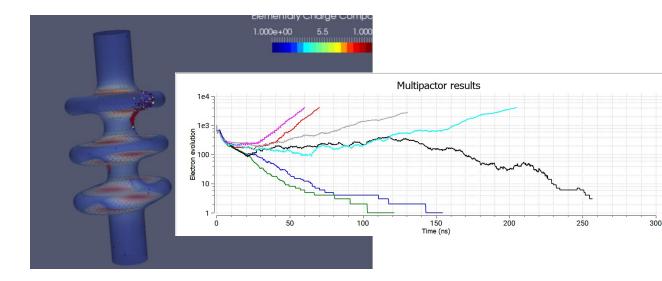
CC Design Parameters

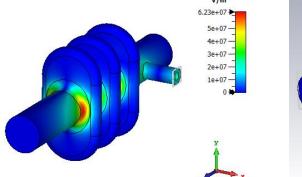
- Propose standardised set of CC parameters for each design.
- This will become the basis for comparison at the Sept Down-selection review.

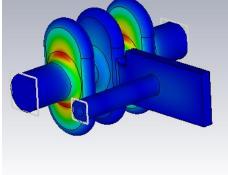

 No further feedback since Design Review meeting #1.

Parameter	Value	Units	
Operating frequency		GHz	
SOM		GHz	
1 st Longitudinal HOM		GHz	
1 st Transverse HOM		GHz	
E _p /E _t *			
B_p/E_t^*		mT/(MV/m)	
B_p/E_p		mT/(MV/m)	
G		Ω	
R/Q		Ω	
R_tR_s		Ω^2	
V _t per cavity		MV	
Ep		MV/m	
B_p		mT	
Total V _t		MV	
Total No. of cavities			
Active Cavity Length		mm	
Flange-flange Cavity Length			
Number of cells			
Cavity Diameter		mm	
Minimum Aperture		mm	
FPC Q _L			
Bandwidth		kHz	
Cavity Input Power		kW	
Horizontal Kick Factor k _x		V/pC	
Vertical Kick Factor k _y		V/pC/m	
Stored Energy W		J	
HOM impedance (Longitudinal)		MΩ	
HOM impedance (Transverse)		MΩ/m	
First 3 multipole pararameters			

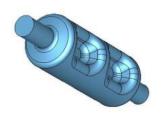


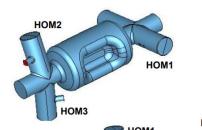

3.9 GHz Racetrack – G Burt (ULAN)



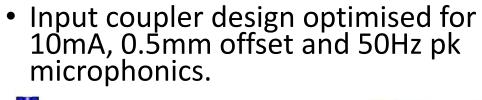

- 30mm external and 25mm internal beam-pipe diameter.
- Multipactor limits V_t to 7 MV.

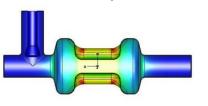
 HOM damping and coupler optimisation requires further refinement.

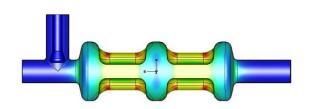


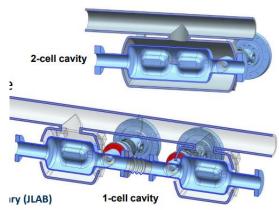


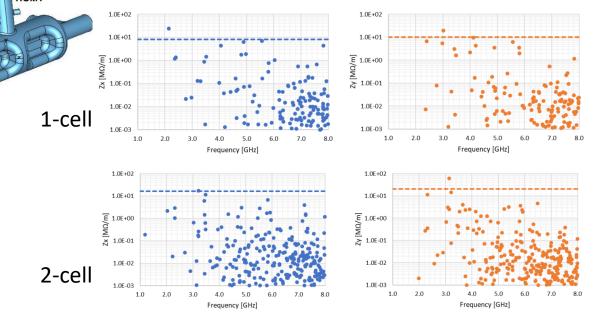
1.3 GHz RF Dipole – S De-Silva (ODU/Jlab)



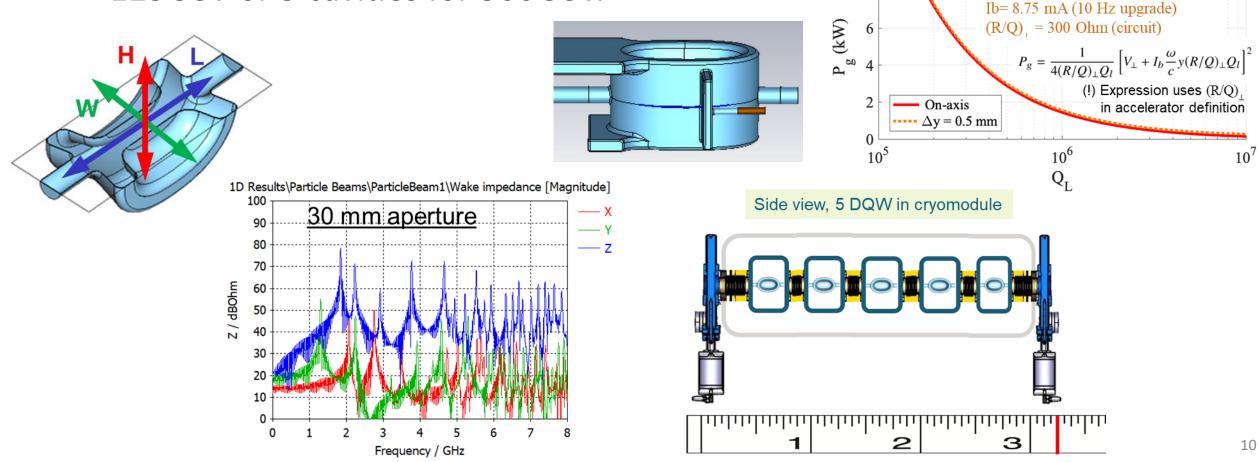





 Single additional HOM coupler needed for trapped mode in 2cell cavity.

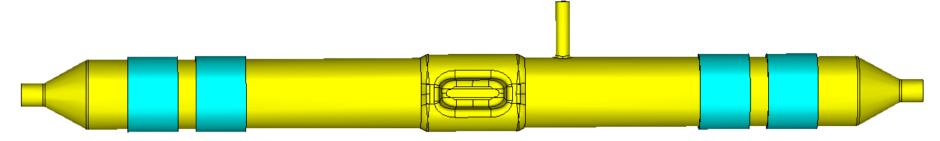

- Single (6-cav) and 2-cell (3 cav) RFD solutions being developed.
- 25mm pole-separation and 30mm beam-pipe diameter.
- microphonics.

V_t of 1.35 MV and 2.4 MV feasible for each design – within ILC CC spec for 125Gev and 500GeV modes.

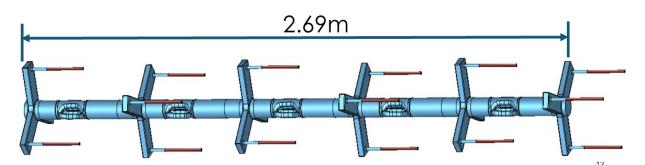

1.3 GHz Double Quarter Wave – S Verdu Andres (BNL)

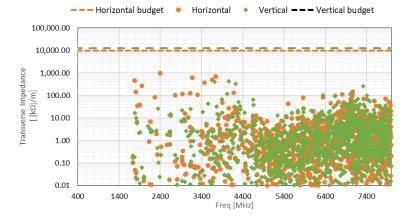
ilc

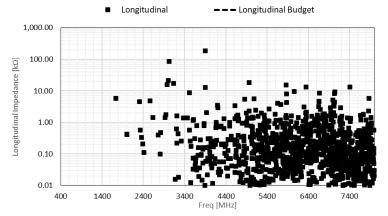
 2 cavities with 30mm aperture can achieve V_t = 1.8MV for 125GeV or 5 cavities for 500GeV. • $Q_L = 10^6$, requires input power of 2kW.


20 mm aperture DQW

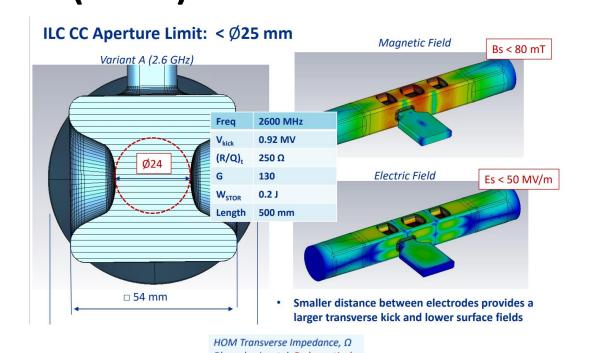
Offset $\leq 0.5 \text{ mm}$

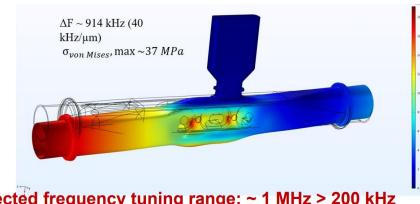


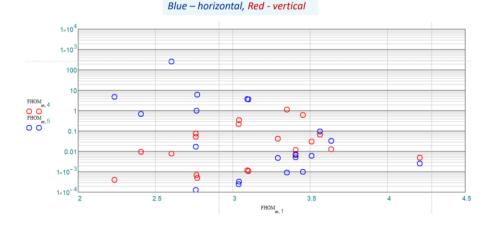

1.3 GHz Wide Open Waveguide – B Xiao (BNL)

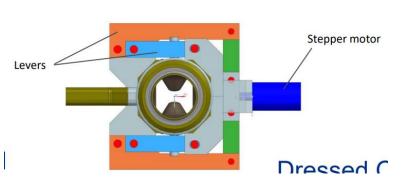


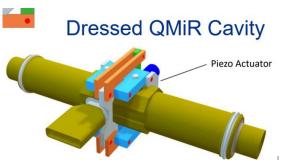
- Pole separation adjusted to 25mm for Vt = 1.48MV.
- Requires 2 cavities for 125GeV and 5 cavities for 500GeV modes, reaching V_t = 8MV peak.
- Waveguide damping of HOMs.




2.6 GHz Quasi-waveguide Multicell Resonator – A Lunin (FNAL)




 Q_L of 1e6, requires P_{gen} = 2kW for Vt = 0.9MV, with 200KHz tuning range defined.


 1 cavity required for 125GeV and 4 cavities can provide 4MV for 500GeV.

Expected frequency tuning range: ~ 1 MHz > 200 kHz

Decisions and Actions from Meeting

Decision

1. Collectively agreed that the original date proposed for first cavity down-selection of 27th Sept 2022, should be re-designated as Design Review #3 meeting. With new date for the cavity down-selection review to be determined for early 2023.

Actions

- 1. Akira to follow-up with the BDS team to try and develop an expected schematic for CC cryomodule and its interfacing to external components. **Akira**
- 2. Each group please send me the max impedance value from the GDFIDL simulations performed by Alexey Lyapin (RHUL), so that we can issue an example to the BDS team for them to assess provisional longitudinal impedance compliance. All
- 3. Slava would also like to have the following parameters for each cavity design, so that he can assess the expected detune required for each CC solution: Operation frequency, R/Q and Loaded Q All

