-- Proposal for a Design-Update --

ILC-ML-SCQ Current-Lead Port Layout

A. Yamamoto,

H. Shimizu, Z. Zong, Y. Arimoto, N. Ohuchi, and Y. Yamamoto

To be reported at ILC-IDT-WG2-SRF Meeting, 2022-6-21

1

A prototype Conduction-cooled SCQ installed into KEK-STF2 beam line in cooperation with Fermilab

CM Assembly with SC Quadrupole (SCQ)

Proposal for the ILC-ML-SCQ Current-Lead Box Location to the other side of CM

SCQ current-lead (CL) box location:

- The CL box is moved to the coupler side,
- The box envelope in width needs to be limited to ≤ 750 mm, from the CM axis.

Reasons:

- Space/gap between CM and Wall is very tight,
- Free space is required for other CM installation and for walking,

Recent confirmation:

• An empty (coupler) port is available at axial center of CM.

Proposal for the CL box to be moved to the Coupler Port Side

ILC-ML SCQ CL and RF Wave-Guide Layout:

SCQ Layout with CL/Coupler Flange

 CL-Box port
Maintenance port (Same port size as Coupler's or Tuner's)

A. Yamamoto, 2022/6/21

8

ILC-ML SCQ-CL and CL-Box

A. Yamamoto, 2022/6/21

ML-CM Heat Loads averaged in ILC-TDR

erage heat loads per		2 K		5–8 K		40–80 K	
dule in a ML unit,		Static	Dynamic	Static	Dynamic	Static	Dynamic
the baseline param-	RF Load		8.02				
r in Table 3.1. All	Radiation Load			1.41		32.49	
ues are in watts $\lfloor 21 \rfloor$.	Supports	0.60		2.40		18.0	
	Input coupler	0.17	0.41	1.73	3.06	16.47	41.78
	HOM coupler (cables)	0.01	0.12	0.29	1.17	1.84	5.8
	HOM absorber	0.14	0.01	3.13	0.36	-3.27	7.09
ged heat loads for SCQ	Beam tube bellows		0.39				
.+2 Dipoles) with 6 CLs	Current leads	0.28	0.28	0.47	0.47	4.13	4.13
3 of one SCQ package	HOM to structure		0.56				
	Coax cable (4)	0.05					
	Instrumentation taps	0.07					
	Diagnostic cable			1.39		5.38	
-	Sum	1.32	9.79	10.82	5.05	75.04	58.80
	Total	11.11		15.87		133.84	

ML-CM Heat Loads, averaged, in ILC-TDR

Average heat loads per		2 K		5–8 K		40-80 K	
module in a ML unit,		Static	Dynamic	Static	Dynamic	Static	Dynamic
for the baseline param-	RF Load		8.02				
eter in Table 3.1. All	Radiation Load			1.41		32.49	
values are in watts [27].	Supports	0.60		2.40		18.0	
	Input coupler	0.17	0.41	1.73	3.06	16.47	41.78
	HOM coupler (cables)	0.01	0.12	0.29	1.17	1.84	5.8
	HOM absorber	0.14	0.01	3.13	0.36	-3.27	7.09
eraged heat loads for SCQ	Beam tube bellows		0.39				
$< 6 \times 100 A$.	Current leads	0.28	0.28	0.47	0.47	4.13	4.13
1 /3 of one SCQ package		2K		5-8K		40-80K	
	<t.l.> in 3 CM</t.l.>	0.5	56	0	.94		8.26
	T.L. / SCQ	1.6	58	2	.82	:	24.78

SCQ-CL New Design Optimization in Progress

60 K anchor

Material	(ILC-TDR)		(New) Cu		Cu + NbTi		$Cu + MgB_2$		Cu + HTS	
Component	St,	Dyn,	Cond.	Heat.	Cond.	Heat.	Cond.	Heat	Cond.	Heat
RT →	3 x 4.13	3 x 4.13	15.3	9.0	15.3	9.0	15.3	9.0	15.3	9.0
60K (x 16.5)	24.78 (W)		24.3		24.3		24.3		24.3	
60 → 5K	3x 0.47	3x0.47	0.9	1.5	0.9	1.3	0.9	0.8	0.1	0
(x 198)	2.82 (W)		2.4		2.1		1.7		0.1	
5 → 2 K	3x0.28	3x0.28	0.6	0.2	0.01	0	0.01	0	0.01	0
(x 703)	1.68 (W)		0.8		0.01		0.01		0.01	
Integrated to RT	2148 (W)		1439		824		745		428	
				+ NbTI (Тс, 9К)	+ M	gB ₂ (Tc, 3	9K) +	HTS (Tc	, >70K)
								-		

ILC ML Heat Loads estimated in TDR V3, Part II and conversion efficiency in Watt/Watt, on page 54.

Table 3.11. Main-linac heat loads and cryogenic plant size [34]. Where there is a site dependence, the values for the flat / mountain topographies are quoted respectively. (The primary difference is in the choice the number of cryo-plants, specifically 6 and 5 plants for flat and mountainous topographies respectively.)

		40–80 K	5–8 K	2 K		
Predicted module static heat load	(W/module)	75.04	10.82	1.32		
Predicted module dynamic heat load	(W/module)	58.80	5.05	9.79		
Number of cryomodules per cryogenic unit		156 / 189	156 / 189	156 / 189		
Non-module heat load per cryo unit	(kW)	0.7 / 1.1	0.14 / 0.22	0.14 / 0.22		
Total predicted heat per cryogenic unit	(kW)	21.58 / 26.40	2.61 / 3.22	1.87 / 2.32		
Efficiency (fraction Carnot)	<u> </u>	0.28	0.24	0.22		
Efficiency in Watts/Watt	(W/W)	16.45	197.94	702.98		
Overall net cryogenic capacity multiplier		1.54	1.54	1.54		
Heat load per cryogenic unit including multiplier	(kW)	33.23 / 40.65	4.03 / 4.96	2.88 / 3.57		
Installed power	(kW)	547/669	797/981	2028 / 2511		
Installed 4.5 K equiv	(kW)	2.50 / 3.05	3.64 / 4.48	9.26 / 11.47		
Percent of total power at each level		0.16	0.24	0.60		
Total operating power for one cryo unit based on p	2.63 / 3.24					
Total installed power for one cryo unit (MW)		3.37 / 4.16				
Total installed 4.5 K equivalent power for one cryo unit (kW) 15.40 / 19.01						

4

Summary

- We propose a new SCQ current lead (CL) box to be implemented into ILC-ML CM design, by using an empty port for the RF Power Coupler.
- It will benefit to minimize the CM horizontal width (envelop), for easier installation into the ML tunnel, and provide more flexible space between the CM and tunnel-wall.
- No major issues have been found with envelopes of HLRF wave guides and power coupler system including vacuum pipe-line
- The conceptual design and layout of the CL-box has been made, and it is ready to be implemented into the ILC-ML CM design, if the proposal may be agreed with the IDT-WG2-SRF group and recognized as a new baseline design with the authorization for the ILC-250.
- We would thank, in advance, **Fermilab** cooperation to integrate the new CL box design envelope to be implemented into the ILC CM CAD drawings.
- The SCQ-CLs may be conduction-cooled, as same as the SCQ itself (meaning HPGS regulation free). Further optimization study is in progress, to establish the best CL configuration with a combination of Cu and LTS/HTS to minimize the power consumption (converted to AC-plug power).

Acknowledgements

- Special thanks for Sergey Belomestnykh and Yuriy M. Orlov, and Vladimir Kashikhin, Fermilab, for their kindest cooperation for the CM design drawings and for the SCQ magnet design and development.
- We would thank **Toshiba Corp**. for their professional cooperation for the new SCQ CL and CL-box engineering design work.
- We would thank **Marc Ross, SLAC**, for his warmest support and cooperation for our design work, based on the US-Japan cooperation program and the license agreement to refer the LCLS-II CM and SRF design work.

Appendix

Courtesy: T. Matsumoto

HLRF Wave Guide Layout Design in Progress

1.3 GHz ILC CM (tuner port view) : based on a Prototype SCQ installed in KEK-STF

A. Yamamoto, 2022/6/21

ilc

STF-CM and SCQ Test in Nov. 2016

1.3 GHz ILC CM (power coupler view)

ILC-ML/CM-SCQ Current-Lead Port Layout -- Update Proposal to be reviewed --

ILC-ML/CM-SCQ Current-Lead Port Layout -- Update Proposal to be reviewed --

A. Yamamoto, 2022/6/21

Current layout

Update Proposal to be reviewed ²³

1.3 GHz cavity string

ILC CM cryogenic piping sizes

2							By Tom P. Calculation				
3	Cryigenic Line	OD, mm	ID,mm	Wall. mr	Material		ID,mm				
4	A	63.500	60.198	1.651	316L St. Steel	Tube, 2.5"-OD, .065" Wall, 316L SS	60.2				
5	В	312.000	300.000	6.000	316L St. Steel	Tube, 300mm-OD, 6mm Wall, 316L SS	300.0				
6	С	63.500	57.404	3.048	316L St. Steel	Tube, 2.5"-OD, .120" Wall, 316L SS					
7	С	60.325	57.023	1.651	316L St. Steel	Pipe 2", SCH 5S	56.1				
8	D	88.900	76.200	6.350	AI 6061	Tube, 3.5"-OD25" Wall, Al 6061	69.9				
9	E	76.200	71.984	2.108	316L St. Steel	Tube, 3"-OD, .083" Wall, 316L SS	72.0				
10	F	88.900	76.200	6.350	AI 6061	Extrusion	79.4				
11	G, 2-phase	73.025	68.809	2.108	316L St. Steel	Pipe 2 1/2", SCH 5S	69.0				
12	"Chimney"-SS	60.325	57.023	1.651	316L St. Steel	Pipe 2", SCH 5S	54.9				
13	"Chimney"-Ti	60.325	57.023	1.651	Ti	Pipe 2", SCH 5S					
14	н	42.164	38.862	1.651	316L St. Steel	Pipe 1 1/4", SCH 5S	38.9				
15											
16	Not Used										
17	The same OD,	wall thick	ness- beca	ause the s	ame Transition	Joint from AI to SS					
18											
19											
20											
21	Line "C"										
22	Chine "G"										
23			Transition SS-Ti								
24	"Chimney" Ti										
25											
26	<u>.</u>										
27											
20											
29	-					0					
21											
31											
22											
24					-						
35					00						
36											
37	3						510157640 (Assembly, 1.2015 U.C.O., (b.)				
38					Q.0		F10157648 (Assembly, 1.3GHz ILC Cavity)				
50				1							