RF DIPOLE DESIGN UPDATE

Suba De Silva

Center for Accelerator Science Old Dominion University

and Thomas Jefferson National Accelerator Facility

Outline

- 1.3 GHz RFD crab cavity design options for ILC
- Fundamental power coupler
- Higher order modes and impedances
- Multipacting analysis
- Mechanical analysis
- Preliminary cryomodule layout
- Summary

Main Goals of the Study

- Transverse voltage: 1.845 MV for 250 GeV and 7.4 MV for 1 TeV
- Cryostat length flange to flange < 3.25 m
- Peak surface fields: $E_p < 45$ MV/m and $B_p < 80$ mT
- Total transverse impedance threshold:
 - Horizontal: 48.8 M Ω /m
 - Vertical: 61.7 M Ω /m

1.3 GHz RFD Cavity Design

- Pole separation 25 mm
- Beam aperture 30 mm
- Two cavity options considered: 1-cell and 2-cell

• Meet peak surface field requirements: $E_p < 45$ MV/m and $B_p < 80$ mT

	250 GeV		1 TeV	
Cavity type	1-cell	2-cell	1-cell	2-cell
Max V _t per cavity [MV]	1.35	2.70	135	2.70
Total V _t [MV]	1.845		7.4	
Number of cavities	2	1	6	3
V _t per cavity [MV]	0.9225	1.845	1.234	2.467

Property	1-cell	2-cell
Operating frequency [GHz]	1.3	1.3
SOM [GHz]	-	1.198
1 st HOM [GHz]	2.142	2.039
$E_{\rm p}/E_{\rm t}^*$	3.83	3.85
$B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]	6.84	6.84
$B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]	1.79	1.78
G [Ω]	129.9	132.2
<i>R</i> / <i>Q</i> [Ω] (V ² /P)	444.8	892.7
$R_t R_s [\Omega^2] (V^2/P)$	5.78×10 ⁴	1.18×10 ⁴
Reference length V/E _t = $\lambda/2$ [mm]	115.3	115.3
V _t [MV]	1.35	2.70
E _p [MV/m]	44.8	45.0
<i>B</i> _p [mT]	80.1	80.0
Pole separation [mm]	25	5
Beam aperture [mm]	30)
Cavity Length [mm] (flange-to-flange)	310	450
Cavity Diameter [mm]	100.3	103.4
Pole Length [mm]	80	80
	Cen	ter for

Fundamental Power Coupler

- Coupling using coaxial antenna
 - Similar to LCLS II power coupler
- Beam current: $I_{\rm b} = 10 \text{ mA}$
- Beam offset: $\Delta x = 0.5 \text{ mm}$
- Microphonics: $\delta f = 50 \text{ Hz}$
- Cavity parameters:

	1-cell	2-cell
<i>R</i> / <i>Q</i> [Ω]	444.8	895.6
V _t per cavity [MV]	1.35	2.7
Q _{ext}	1.5	×10 ⁷
RF Power at the cavity [W]	300	600
RF heating at Cu probe [W]	1.2	2.22

Higher Order Mode Damping

- Damping using 3 TESLA type HOM couplers
 - Damper design used in the LCLS II cavities
 - 1-cell cavity: All the couplers are placed on the beam
 - 2-cell cavity: Single coupler on cavity body to couple to the trapped modes between the poles
- Further HOM damping schemes to be explored
 - LHC-RFD HOM coupler option
 - Waveguide damping option
- Final choice will be decided based on
 - RF properties including HOM power
 - Engineering and manufacturing complexity

Preliminary Transverse HOM Damping – 1-cell Cavity

- Impedance threshold: $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity: $Z_x = 8.14 \text{ M}\Omega/\text{m}$ and $Z_y = 15.425 \text{ M}\Omega/\text{m}$ (6 cavities)

- Impedances calculated using circuit definition
- Modes calculated up to beam pipe aperture cut off frequency

Preliminary Transverse HOM Damping – 2-cell Cavity

- Impedance threshold: $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity: $Z_x = 16.27 \text{ M}\Omega/\text{m}$ and $Z_y = 20.57 \text{ M}\Omega/\text{m}$ (3 cavities)

- Impedances calculated using circuit definition
- Modes calculated up to beam pipe aperture cut off frequency

Multipacting Analysis

- Resonant particles traced for 50 rf cycles with impact energy 20-2000 eV
- Simulated for a 1/8th surface area

DMINION UNIVERSITY

Stress Analysis

- Analysis at 2.2 atm external pressure
- Nb material properties at room temperature
 - (JLAB-TN-09-002 C100 Cryomodule Niobium Cavity Structural Analysis)
 - Young's modulus 82.7 GPa (1.2×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3 mm
- Boundary conditions Cavity constrained at beam pipes and FPC
- Allowable stress < 43.5 MPa
- Maximum stress
- Initial analysis shows cavity doesn't require stiffening
- Cavity can be machined with varying thickness

Tuning Sensitivity

Cavity

Туре

1-cell

2-cell

Total

Displacement

0.23 mm

0.27 mm

Tuning

Sensitivity

8.5 MHz/mm

4.1 MHz/mm

OLD

DMINION UNIVERSITY Tuning

Range

1.96 MHz

2.23 MHz

- Nb material properties at cryo temperature
 - Young's modulus 123 GPa (1.79×10⁷ psi)
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC

Pressure Sensitivity

- Nb material properties at room temperature
 - Young's modulus 82.7 GPa (1.2×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC
- Stiffening at poles can reduce pressure sensitivity

Cavity Type	d <i>f/</i> dP [Hz/mbar]
1-cell	561.3
2-cell	751.5

• Stiffening at poles can reduce pressure sensitivity

Center for

Lorentz Detuning

- Nb material properties at cryo temperature
 - Young's modulus 123 GPa (1.79×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC
- Lorentz detuning can be reduced by tuner
 - Tuning by push/pull at top and bottom of the cavity

Cavity Type	k _L [kHz/(MV)²]	Vt [MV]	Δ <i>f</i> [kHz]
1-cell	-3.67	1.35	6.7
2-cell	-1.11	2.7	8.1

11

Center for

Conceptual He Vessel and Cryomodule Design

- At 1 TeV Cryomodule required to fit in within 3.25 m
- 1-cell cavity
 - 6 cavities in a single cryomodule
 - 10% extra margin
- 2-cell cavity
 - Minimum 3 cavities in a single cryomodule will deliver required V_t
 - Space available for 4 cavities in a single cryomodule
 - 30% extra margin available with 4 cavities
- Cavity thickness 3mm
- Design concept follows JLab C100 cryomodule
- Second beam pipe 20 mm beam pipe

Conceptual He Vessel and Cryomodule Design

Six 1-cell cavities

2.22 m

- Total achievable $V_{t} = 8.1 \text{ MV}$
- Cryomodule length = 3.25 m
- Cryomodule diameter = 0.82 m

DMINION UNIVERSITY

Summary

- Two 1.3 MHz rf-dipole cavity options were developed following the reduced beam line space of 3.25 m
 - Cavity design was evaluated with 25 mm pole separation and 30 mm beam aperture
- Both 1-cell and 2-cell designs meet current specifications in:
 - Dimensional requirements, peak surface fields with required transverse voltage
 - An acceptable HOM damping mechanism is identified
 - Requires further analysis on HOM damping
 - Longitudinal effects to be evaluated
- Initial cavity designs are completed with FPC
- Preliminary mechanical analysis is completed
- Several cavity options allows trade off between maximum voltage and margin

Back Up Slides

Multipole Components

- Higher order multipole components for the bare cavity
- Requires a finer mesh along the beam center

Component	Units	1-cell	2-cell
V _z	[V]	0.575	-77.25
V _t	[V]	1.0E+06	1.0E+06
b ₀	[mT/m ²]	0	0
b ₁	[mT/m]	3.3	3.3
b ₂	[mT]	-0.0013	-0.00045
b ₃	[mT m]	2275.8	2106.6
b ₄	[mT m ²]	9.2	3.2
b ₅	[mT m ³]	-1.39E+6	-1.43E+6
b ₆	[mT m ⁴]	-4.83E+4	-1.68E+4
b ₇	[mT m ⁵]	-1.97E+9	-1.89E+9

Jeffer

C100 Cryomodule Design

Final Design for JLEIC Crabbing System - 952 MHz 2-cell RFD

952 MHz RFD - Fabrication in Progress

- Material cost sheet Nb forming instead of machining
- Avoid weld seams at high mechanical stress area and high surface magnetic field area
- Use of simple weld only high production yield
- Strategy relevant to final cavity with HOM dampers

Supported by grant from the state of Virginia through SURA

