

Crab Cavity Design Options

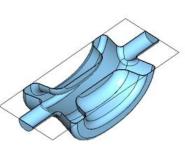
Double Quarter Wave (DQW)

Silvia Verdú-Andrés (BNL), Rama Calaga (CERN)

DQW Design Evolution

- 400 MHz
- Vertical kick
- With waist
- Elliptical profile
- ... No clearance issues, ease fab, reduce cost
- eFurther reduce peak fields \rightarrow

EIC


- 200, 400 MHz
- Horizontal kick
- Flat walls

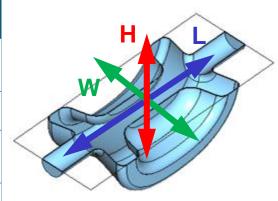
 \rightarrow

Cassini" oval profile

Max. peak surface H
Image: Construction of the second second

Comparison between cavity models

	LHC-type DQW (B05)	EIC-type DQW (A42)	LHC+EIC-type (C02)
Aperture, capacitive plate distance (mm)	20	20	20
Profile	Elliptical, with waist	Oval, straight walls	Oval, with waist
Dimensions: L x W x H (mm)	95 x 100 x 88	115 x 98 x 82	117 x 76 x 97
Circuit Rt/Q (Ohm)	309	333	311
Geometric factor (Ohm)	80	82	97
Epk (MV/m) at 1.86 MV	50	56	55 ←
Bpk (mT) at 1.86 MV	99	81	84 ←
First HOM (GHz)	1.74 (z)	1.98 (z)	2.18 (z) ←
			Added advantages: broad

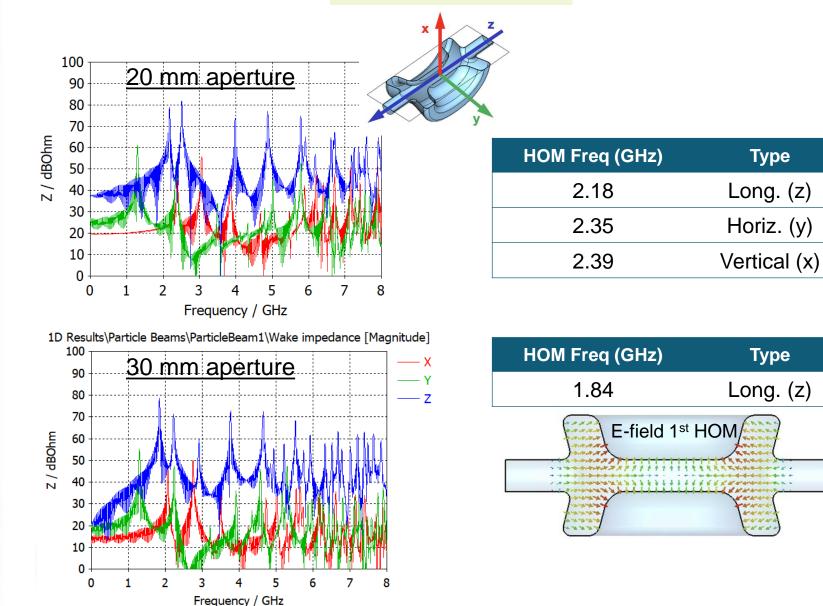

Ζ

Added advantages: broad inductive plate to accommodate ports, ease cleaning

Broo Nationa Х

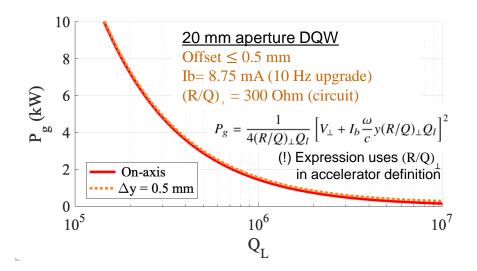
ILC 1.3 GHz: DQW aperture study

	LHC+EIC-type	LHC+EIC-type
Aperture, capacitive plate distance (mm)	30*	20
Profile	Oval, with waist	Oval, with waist
Dimensions: L x W x H (mm)	126 x 91 x 106	117 x 76 x 97
Circuit Rt/Q (Ohm)	153	311
Geometric factor (Ohm)	104	97
Epk (MV/m) at 1.86 MV	63	55
Bpk (mT) at 1.86 MV	109	84
First HOM (GHz)	1.84 (z)	2.18 (z)


* Peak fields may be further reduced with refined optimization

- Depending on beam scenario and adopted maximum peak fields and minimum aperture, one or two cavities needed to provide required crabbing kick with low peak fields. [Vt = 1.86 MV (for 125 GeV, with 1 cavity for 20 mm aperture or 2 for 30 mm) or 1.5 MV (for 500 GeV, with 5 cavities)]
- Next step : -- reiterate cavity optimization once aperture value is agreed upon

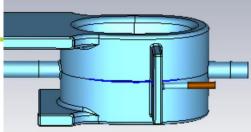
Mode spectrum w/o HOM Couplers


LHC+EIC-type DQW

Couplers

INPUT POWER COUPLER

Selecting a loaded Q ~ 10⁶ leads to input power below 2 kW with cavity bandwidth of 1.3 kHz.

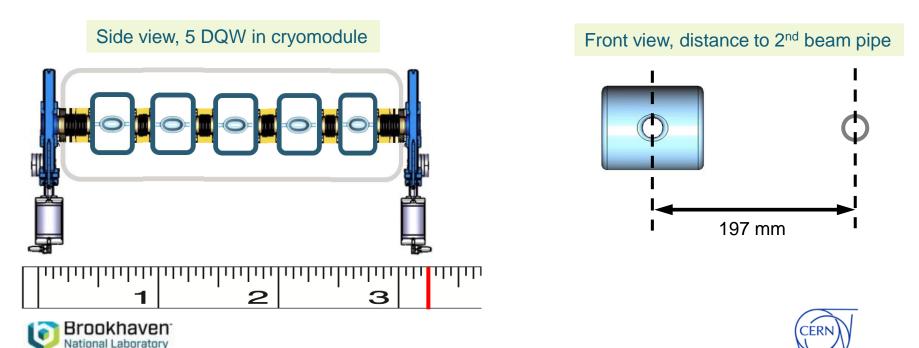


HOM COUPLER

Depending on the impedance requirements, either <u>coaxial or waveguide or</u> <u>a combination</u> can be used to damp the HOMs.

Due to high frequency of the 1st HOM, a waveguide or a waveguide stub coupled to an antenna can be an efficient and simple solution. [Rectangular WG with a ~ 83 mm has f_{c.TE10} = 1.8 GHz.]

Next steps: -- HOM coupler integration, FPC



Integration: cryomodule, 2nd beam pipe

- For 1 TeV CoM beam scenario, <u>5 DQW cavities</u> are sufficient to provide a <u>7.4 MV crabbing kick at 1.3 GHz</u>.
- Length available of <u>3.25 m enough</u> for crab cavities and other necessary components (cold-warm transitions, gate valves, etc.).
- ▷ Sufficient clearance to 2nd beam pipe for coupler integration.

Summary and Overview

- The <u>DQW</u> cavity is a <u>compact solution for the ILC crabbing system</u>. Two <u>single-cell cavities</u> provide <u>1.86 MV with safe max. peak fields</u>.
- ▷ Tuner and coupler integration can be borrowed from HL-LHC and EIC.
- Cavity compactness opens the possibility of manufacturing the cavity out of ingot, which in turn makes the port fabrication much easier and enables the implementation of port interfaces with smooth surfaces for peak field reduction. (The HOM coupler for the HL-LHC DQW was made from ingot and demonstrated good performance.)
- Fabrication and <u>testing of a prototype</u> will help the decision on how many cavities are needed to provide the required crabbing kick for ILC.

▶ Work to be done: coupler integration, multipacting, mechanical analysis.

