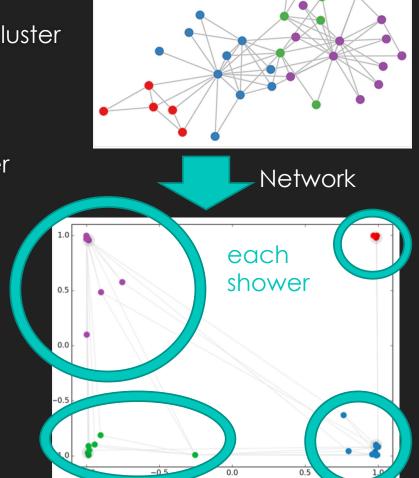
Development of ILC shower clustering algorithm using Deep Neural Network

Kyushu Univ. Shusaku Tsumura

2022/7/6 General Meeting

Shower Clustering by Graph Neural Network

- O Shower Clustering : Identification that each hits in the calorimeter belongs to which cluster
 → Important role in the Particle Flow Algorithm
- Graph Neural Network : Input data is interpreted as graph
 - \rightarrow It helps to represent the relation between the hits in one shower
- Hits that belong to one shower are represented closer together on the graph
- O One kind of network : GravNet



2

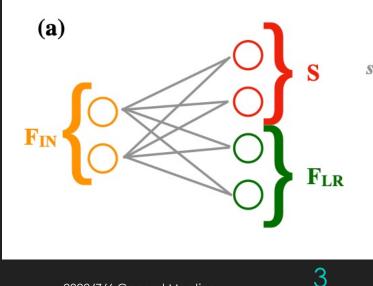
GravNet - Network

• Input Data : $B \times V \times F_{IN}$

B : Number of examples including in a batchV : Number of hits for each detector

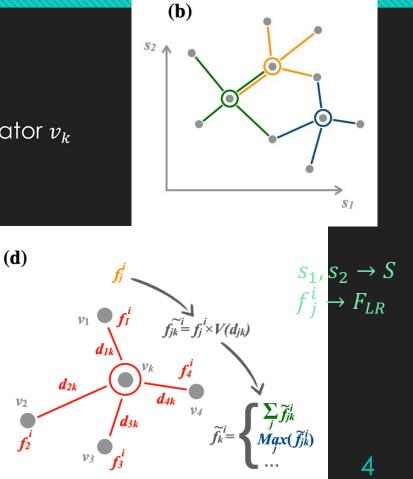
F_{IN} : Number of the features for each hit

- S : Set of coordinates in some learned representation space
- \circ F_{LR} : learned representation of the vertex features

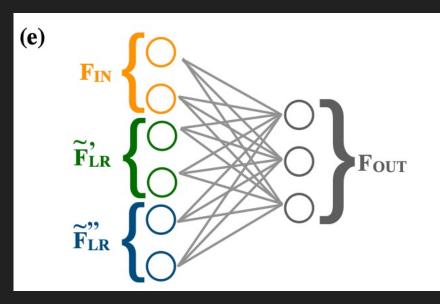


GravNet

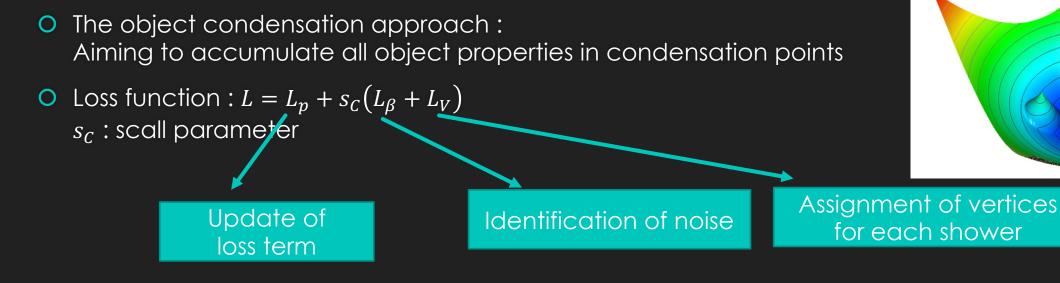
- Input example of initial dimension $V \times F_{IN}$ is converted into a graph.
- the f_j^i features of the v_j vertices connected to a given vertex or aggregator v_k are converted into the $\tilde{f_{jk}}^i$ quantities, through a potential (function of euclidean distance d_{jk}).
- The potential function $V(d_{jk})$ is introduced to enhance the contribution of close-by vertices. Example: $V(d_{jk}) = \exp(-d_{jk}^2)$
- The $\widetilde{f_{jk}}^{i}$ functions computed from all the edges associated to a vertex of aggregator v_k are combined, generating a new feature $\widetilde{f_k}^{i}$ of v_k . Example : the average of the $\widetilde{f_{jk}}^{i}$ across the j edges / their maximum



- For each choice of gathering function, a new set of features $\tilde{f_k}^i \in \tilde{F_{LR}}$ is generated.
- The $\widetilde{F_{LR}}$ vector is concatenated to the initial vector.
- Activation function : tanh
- The F_{OUT} output carries collective information from each vertex and its surrounding.

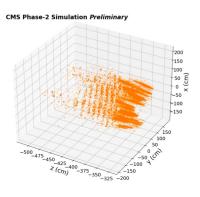


Loss function – Object Condensation



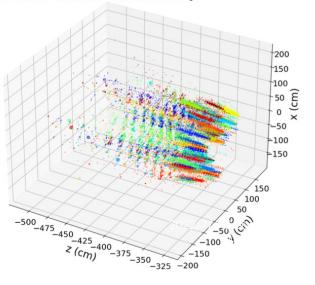
CMS Results

Shower particle type (selected randomly) : 0 electrons / muons / photons / charged and neutral pions / charged, neutral, charged, short- and long-lived kaons



CMS Phase-2 Simulation Preliminary CMS Phase-2 Simulation Preliminary 200 150 100 (cm) 50 0 × -50 -100 -150 150 100 50 $-500_{-475}_{-450}_{-425}_{-400}_{-375}_{-350}_{-325}_{-200}$ 0 100 150

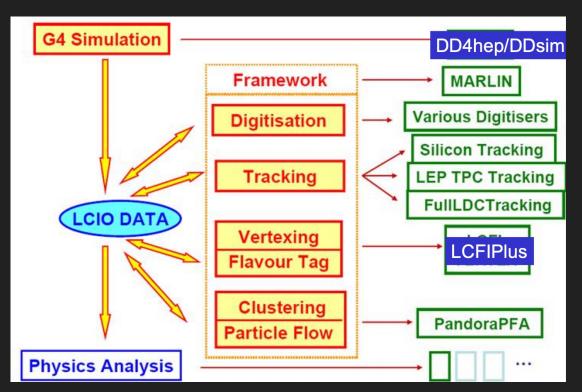
Predicted Cluster



True Cluster

Apply GNN for ILC

- Current clustering algorithm of ILC : PandoraPFA
 → Improve by the Graph Neural Network (GNN)
- Task : Preparation of input data (Numpy)



Summary

- Graph Neural Network using GravNet and Object condensation is useful for the shower clustering algorithm
- GravNet represent the features of hit points as distance-weighted graph and aggregate the hits of one shower
- Object condensation method improve the identification of each shower
- I need to implement the input data of the ILC simulation as Numpy file and confirm if the GravNet improve the accuracy.

Backup

2022/7/6 General Meeting

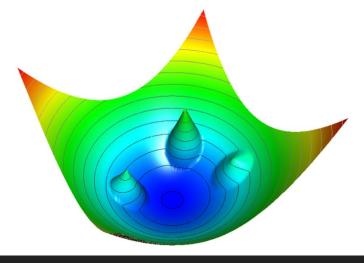
Loss function - Network Learning -

The object condensation approach : Aiming to accumulate all object properties in condensation points

Assignment of vertices for each sower

Identification of noise

Update of loss term



- The value of β_i ($0 < \beta_i < 1$) is used to define a charge q_i per vertex i $q_i = \operatorname{arctanh}^2 \beta_i + q_{\min} \quad (\beta_i \to 1 : q_i \to +\infty)$
- The charge q_i of each vertex belonging to an object k defines a potential $V_{ik}(x) \propto q_i$
- The force affecting vertex j can be described by

$$q_j \cdot \nabla V_k(x_j) = q_j \nabla \sum_{i=1}^N M_{ik} V_{ik}(x_j, q_i)$$

 $M_{ik} = \begin{cases} 1 \ (vertex \ i \ belonging \ to \ object \ k) \\ 0 \ (otherwise) \end{cases}$

2022/7/6 General Meeting

Loss function

• The potential of object k can be approximated :

 $V_k(x) \approx V_{\alpha k}(x, q_{\alpha k}), \text{ with } q_{\alpha k} = \max_i q_i M_{ik}.$

• An attractive and repulsive potential are defined as :

$$\breve{V}_k(x) = \|x - x_\alpha\|^2 q_{\alpha k}, \text{ and}$$

$$\widetilde{V}_k(x) = \max(0, 1 - \|x - x_\alpha\|) q_{\alpha k}.$$



• The total potential loss L_V :

$$L_V = \frac{1}{N} \sum_{j=1}^N q_j \sum_{k=1}^K \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right)$$

Loss function

 s_B : hyperparameter describing the background suppression strength K: Maximum value of objects N_B : Number of background n_i : Noise tag (if noise, it equals 1.)

• The L_V has the minimum value for $q_i = q_{\min} + \epsilon \ \forall i$

• To enforce one condensation point per object, and none for background or noise vertices, the following additional loss term L_{β} is introduced :

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,$$

• The loss terms are also weighted by $\operatorname{arctanh}^2 \beta_i$:

$$L_p = \frac{1}{\sum_{i=1}^N \xi_i} \cdot \sum_{i=1}^N L_i(t_i, p_i) \xi_i, \text{ with}$$
$$\xi_i = (1 - n_i) \operatorname{arctanh}^2 \beta_i.$$

 p_i : Featutes $L_i(t_i, p_i)$: Loss term (Difference between true labels and outputs of network)

> 2022/7/6 General Meeting

13

Loss function

• If high efficiency instead of high purity is required :

$$L'_{p} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{\sum_{i=1}^{N} M_{ik} \xi_{i}} \cdot \sum_{i=1}^{N} M_{ik} L_{i}(t_{i}, p_{i}) \xi_{i}.$$

• In practice, individual loss terms might need to be weighted differently : $L = L_p + s_C(L_\beta + L_V)$

