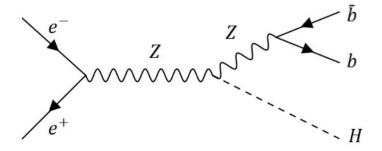
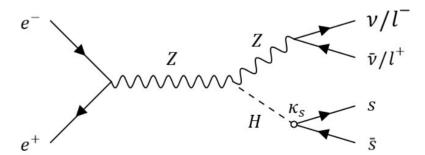
Impact of Advances in Detector Techniques on Higgs Measurements at Future Higgs Factories

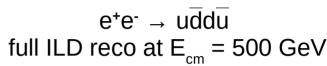
Uli Einhaus, Bohdan Dudar, Jenny List Yasser Radkhorrami ICHEP Bologna 08.07.2022

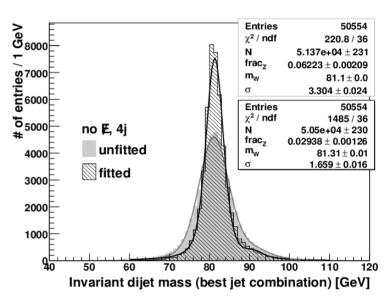

CLUSTER OF EXCELLENCEQUANTUM UNIVERSE



Motivation

- Most of the low-hanging fruit in Higgs analyses have been picked, focus on more challenging channels → b, c, s jets
- Develop new methods and algorithms to utilise each Higgs event as well as possible!
- Inform detector development and requirements

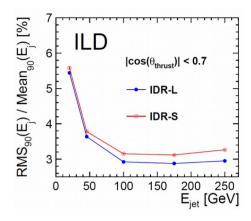

Kinematic Fitting

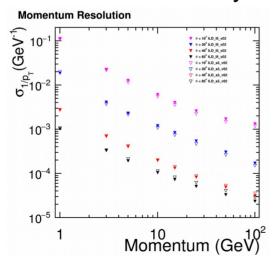

- Re-assess each event (and e.g. reco inv. mass) by using
- 1. uncertainties on each individual outoing object, e.g. jet or isolated lepton
- 2. constraints unique to e+e- colliders:

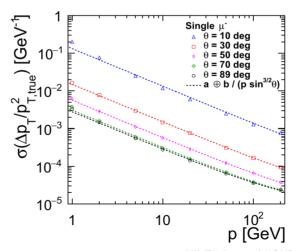
•
$$\sum_{i=1}^{4} E_i = 500 \text{ GeV}$$

•
$$\sum_{i=1}^{4} p_{x,i} = 0 \text{ GeV}, \sum_{i=1}^{4} p_{y,i} = 0 \text{ GeV}, \sum_{i=1}^{4} p_{z,i} = 0 \text{ GeV}$$

- 3. constraints given by the specific analysis, e.g.:
 - $M(j_1, j_2) = M(j_3, j_4)$

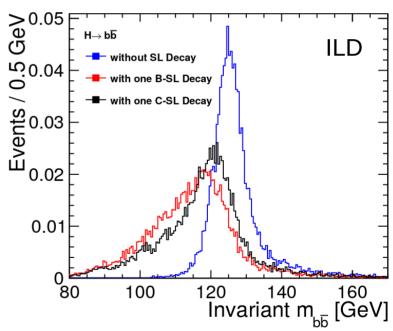

[LC-TOOL-2009-001 https://bib-pubdb1.desy.de/record/88030]


^{*} modulo small opening angle of colliding beams


Kinematic Fitting: Detector Requirements

- Need excellent jet energy resolution with full uncertainties
 - → Particle Flow detector
 - → low material budget tracker
 - → high granularity calorimeter
- Need very good single particle res. in both tracker and calorimeter

Side note: this applies also at relatively low momenta, where the relative momentum resolution is dominated by multiple scattering!

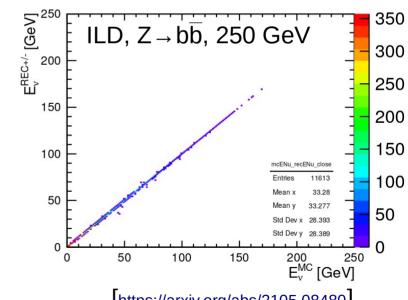

[left, top: ILD IDR 2020

https://arxiv.org/abs/2003.01116]

[right: CLD, FCC-ee CDR 2019 https://doi.org/10.1140/epjst/e2019-900045-4]

Neutrino Correction in Semi-Leptonic Decays

- In $H \rightarrow b\overline{b}$, but also $ZH \rightarrow b\overline{b} + X$
- B- and D-mesons can decay semileptonically (SLD) including a neutrino 2/3 of bb-systems have at least 1 SLD
- Significantly worsens reconstructed invariant mass
- Find b- (or c-) jet
- Reconstruct 4-momentum of neutrino by
 - finding its brother lepton (e/μ)
 - finding its mother (= B/D decay) vertex

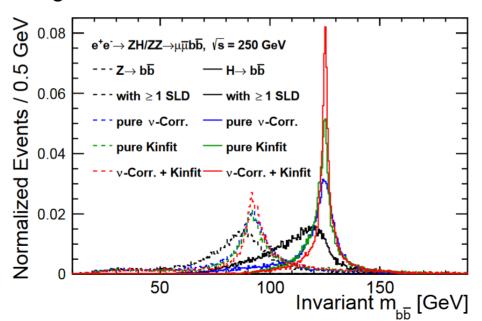


https://arxiv.org/abs/2105.08480

Neutrino Correction in Semi-Leptonic Decays

- In $H \rightarrow b\overline{b}$, but also $ZH \rightarrow b\overline{b} + X$
- B- and D-mesons can decay semileptonically (SLD) including a neutrino 2/3 of bb-systems have at least 1 SLD
- Significantly worsens reconstructed invariant mass
- Find b- (or c-) jet
- Reconstruct 4-momentum of neutrino by
 - finding its brother lepton (e/µ)
 - finding its mother (= B/D decay) vertex
- Works alone up to sign ambiguity, here the better of the two solutions is shown

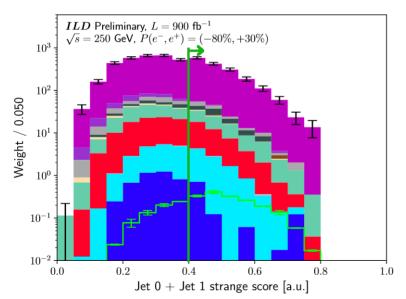
Kinematic Fit + Neutrino Correction

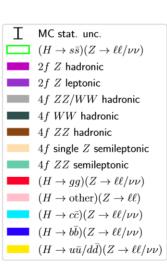

- Implementing full covariance matrix of measurement uncertainties drastically improves fit probability, allows to scale individual contributions to match flat distribution
- Neutrinos correction negates effect of SLD
- Together with kinematic fit allows for much narrower reconstructed Higgs mass

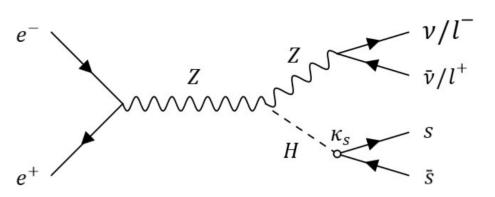
Kinematic Fit + Neutrino Correction

- Implementing full covariance matrix of measurement uncertainties drastically improves fit probability, allows to scale individual contributions to match flat distribution
- Neutrinos correction negates effect of SLD
- Together with kinematic fit allows for much narrower reconstructed Higgs mass and separation from background from Z

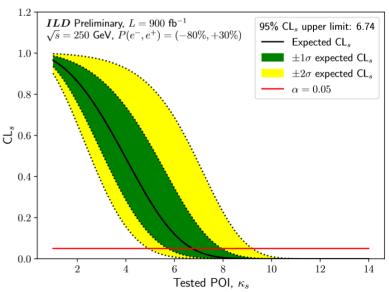
https://arxiv.org/abs/2110.13731

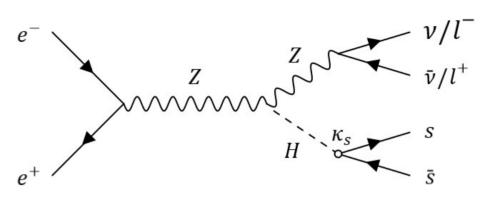

Neutrinos Correction: Detector Requirements

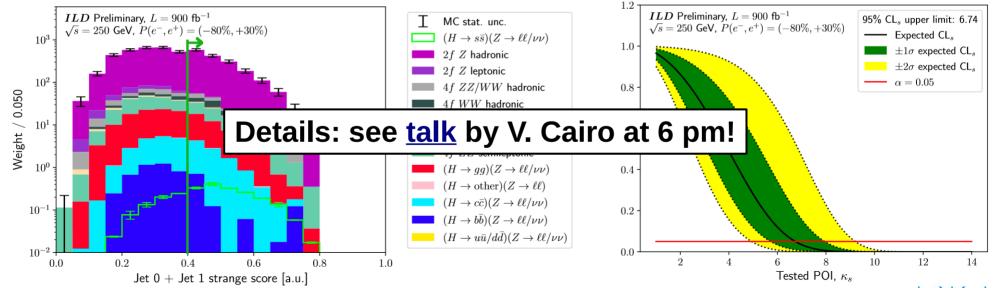

- Find all visible energy: $\sim 4\pi$ hermeticity, high tracking efficiency at low momenta
- Flavour tagging and B/D-vertex reconstruction:
 - excellent vertex detector
 - hadron PID → high momentum kaons indicate
- Find electrons and muons: e,µ-ID
 - both already very good with low material tracker and dedicated ECal and muon chamber
 - additional PID for electrons via dedicated PID systems pushes efficiency
 - e-ID via bremsstrahlung reconstruction



Higgs to strange

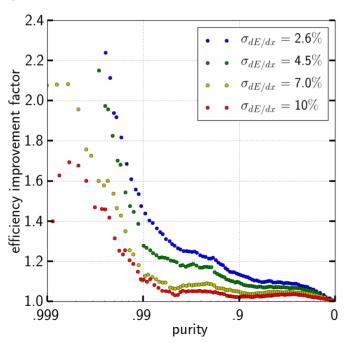

- Measure Higgs to strange coupling
- Utilize new strange tagger using K±, K⁰s, Λ⁰
 - → allows to cut background by factor 3
- Results in upper limit on κ_s < 6.7


https://arxiv.org/abs/2203.07535

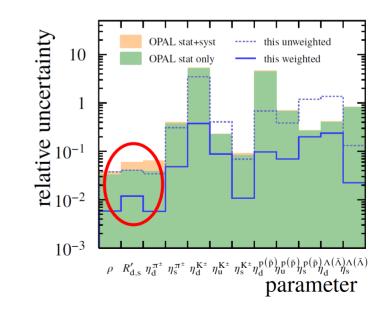


Higgs to strange

- Measure Higgs to strange coupling
- Utilize new strange tagger using K±, K⁰s, Λ⁰
 - → allows to cut background by factor 3
- Results in upper limit on κ_s < 6.7


https://arxiv.org/abs/2203.07535

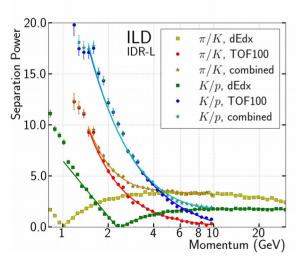
Hadronic W and Z decays


 Side note: strange tagging can also be used to tag hadronic decays of W and Z in order to measure their coupling to quarks → test SM, bread & butter at LEP

W → c+s vs. u+d separation via BDT improves with better dE/dx resolution

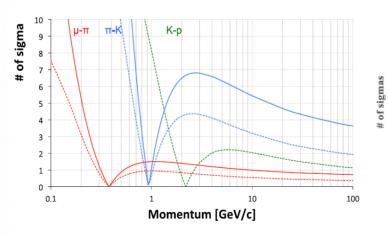
Measurement of $Z \rightarrow d/s$ via simultaneous fit of hadronisation fractions

https://ediss.sub.uni-hamburg.de/handle/ediss/9634

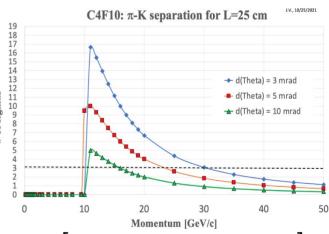


Higgs to strange: Detector Requirements

- Excellent vertexing for b/c veto
- Identify K[±], K⁰s, Λ⁰
 - → kaon / charged hadron PID
 - → V0 finding → benefits from continuous tracker


TPC: dE/dx (dN/dx?)

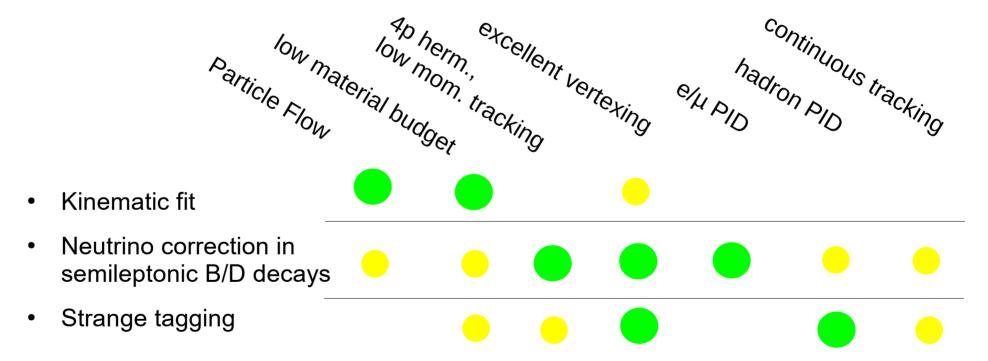
ECal: TOF


[ILD IDR 2020 https://arxiv.org/abs/2003.01116]

DC: dE/dx or dN/dx

[IDEA, FCC-ee CDR 2019 https://doi.org/10.1140/epjst/e2019-900045-4]

RICH



https://arxiv.org/abs/2203.07535

Summary

 In order to utilise precious collisions and precise detectors, new methds and algorithms have been and are being developed and inform detector requirements

