Search for new particles at the ILC

Mikael Berggren¹ on behalf of the ICFA-IDT-WG3 BSM group

¹DESY, Hamburg

ICHEP2022, Bologna, July, 2022

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Mikael Berggren (DESY)

BSM searches at with ILD at ILC

ICHEP22 1/15

The ILC strong points for searches

- e^+e^- collider with $E_{CMS} = 250 500$ (- 1000) GeV, and polarised beams
- e^+e^- means EW-production \Rightarrow Low background.
 - Detectors w/ $\sim 4\pi$ coverage.
 - Rad. hardness not needed: only few % X_0 in front of calorimeters.
 - No trigger
- e^+e^- means colliding point-like objects \Rightarrow initial state known
- 20 year running \rightarrow 2 ab⁻¹ @ 250 GeV, 4 ab⁻¹ @ 500 GeV.
- Construction under political consideration in Japan.

Introduction

ILC Detectors: the ILD and SiD concepts

Physics requirements, SM and BSM:

- $\sigma(1/p_{\perp}) = 2 \times 10^{-5} \text{ GeV}^{-1}$
- JER \sim 3-4%
- σ(d₀) < 5μ
- hermeticity down to 5 mrad
- triggerless operation.

Leads to key features of the detector:

- High granularity calorimeters optimised for particle flow
- Power-pulsing for low material.

(B)

Introduction

ILC Detectors: the ILD and SiD concepts

Physics requirements, SM and BSM:

- $\sigma(1/p_{\perp}) = 2 \times 10^{-5} \text{ GeV}^{-1}$
- JER \sim 3-4%
- σ(d₀) < 5μ
- hermeticity down to 5 mrad
- triggerless operation.

Leads to key features of the detector:

- High granularity calorimeters optimised for particle flow
- Power-pulsing for low material.

Both concepts can deliver!

12 N A 12

BSM at ILC

In this talk: Concentrating on

• SUSY:

- The most complete theory of BSM.
- Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
- Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
- Under some stress(?) by LHC. However, ILC offers
 - Complete coverage of Compressed spectra the most interesting case.
 - Loop-hole free searches.
- + A few slides on non-SUSY BSMs...

소리 에 소문에 이 것 같아. 소문 이 모님의

BSM at ILC

In this talk: Concentrating on

• SUSY:

- The most complete theory of BSM.
- Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
- Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
- Under some stress(?) by LHC. However, ILC offers
 - Complete coverage of Compressed spectra the most interesting case.
 - Loop-hole free searches.

• + A few slides on non-SUSY BSMs...

▲□ ▲ ■ ▲ ■ ▲ ■ ■ ■ ● ● ●

BSM at ILC

In this talk: Concentrating on

• SUSY:

- The most complete theory of BSM.
- Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
- Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
- Under some stress(?) by LHC. However, ILC offers
 - Complete coverage of Compressed spectra the most interesting case.
 - Loop-hole free searches.
- + A few slides on non-SUSY BSMs...

・ 同 ト ・ 日 ト ・ 日 ト ・ 日 日

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos *must* be close to the LSP.
 - \Rightarrow Compressed spectrum.
 - In addition: if the LSP is higgsino: *Natural SUSY*:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$

• Bino LSP: Overabundance of DM.

- Need balance between early universe production and decay.

- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos *must* be close to the LSP.
 - \Rightarrow Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$

Bino LSP: Overabundance of DM.

- Need balance between early universe production and decay.
- One compelling option is

 τ Co-annihilation. For this to
 contribute: Early universe density of
 τ and χ₁⁰ similar ⇒ Compressed
 spectrum.

- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos *must* be close to the LSP.
 - \Rightarrow Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM.
 - Need balance between early universe production and decay.
 - One compelling option is [˜] Co-annihilation. For this to contribute: Early universe density of [˜] and [˜] ζ⁰ similar ⇒ Compressed spectrum.

ICHEP22 6/15

- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos *must* be close to the LSP.
 - \Rightarrow Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM.
 - Need balance between early universe production and decay.
 - One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Compressed spectrum.

Mikael Berggren (DESY)

ICHEP22 6/15

Why compressed spectra ? Global fits

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

 $M_{ ilde{\chi}_1^\pm}$ - $M_{ ilde{\chi}_1^0}$ plane

(4) (5) (4) (5)

A D b 4 A b

Why compressed spectra ? Global fits

4 A N

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

So, at ILC :

- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots

• No fine-print!

000 E E 4 E + 4 E

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

So, at ILC :

- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots
- No fine-print!

3 > 4 3

ILC projection for Higgsino or $\tilde{\tau}$ NLSP

From arXiv:2002.01239

From arXiv:2105.08616

ILC projection for Higgsino or $\tilde{\tau}$ NLSP

From arXiv:2002.01239

ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{EPJC 76, 183 (2016)}$), after:

• 5 fb⁻¹ \approx 1 week

and

• 500 fb⁻¹ \approx 2 years.

Will never be in "3 σ limbo" !

ILD fast detector simulation studies: Selectrons in a co-annihilation model (EPJC 76,183 (2016)), after:

• 5 fb⁻¹ \approx 1 week

and • 500 fb⁻¹ pprox 2 years.

Will never be in "3 σ limbo" !

ILD fast detector simulation studies: Selectrons in a co-annihilation model (EPJC 76,183 (2016)), after:

• 5 fb⁻¹ \approx 1 week

and

• 500 fb⁻¹ \approx 2 years.

Will never be in "3 σ limbo" !

ILD fast detector simulation studies: Selectrons in a co-annihilation model (EPJC 76,183 (2016)), after:

• 5 fb⁻¹ \approx 1 week

and

• 500 fb⁻¹ \approx 2 years.

Will never be in "3 σ limbo" !

ILD detector simulation studies:

- Typical slepton signal (τ̃ and μ̃), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim) (Phys Rev D 101,095026 (2020))
- Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

SGV

500 GeV 500 fb⁻¹ F

ILD detector simulation studies:

- Typical slepton signal (τ̃ and μ̃), in a co-annihilation model (FastSim). (ΕΡJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim) (Phys Rev D 101,095026 (2020))
- Typical chargino/neutralino signal, higgsino-LSP model, with very low △M (Fast/FullSim).

Mikael Berggren (DESY)

ILD detector simulation studies:

- Typical slepton signal (τ̃ and μ̃), in a co-annihilation model (FastSim). (ΕΡJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim)

(Phys Rev D 101,095026 (2020))

 Typical chargino/neutralino signal, higgsino-LSP model, with very low △M (Fast/FullSim).

Mikael Berggren (DESY)

ILD detector simulation studies:

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim) (Phys Rev D 101,095026 (2020))
- Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

(EPJC 73,2660 (2013))

< E

ILD detector simulation studies:

- Typical slepton signal (τ̃ and μ̃), in a co-annihilation model (FastSim). (ΕΡυσ
- Typical chargin In all cases:
- ... and typical r signal, higgsing with moderate (Phys Rev D 101,0950
- SUSY masses to sub-percent
- Cross-sections to few percent

ш 400

200

200 250 300

 Typical chargino/neutrainto signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

(EPJC 73,2660 (2013))

SUSY bosinos - All-in-one

ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1

Mikael Berggren (DESY)

Other BSM: a gallery

DM from mono-γ (EFT) (Phys. Rev. D 101, 075053 (2020))

Mikael Berggren (DESY)

BSM searches at with ILD at ILC

◆ E ▶ E E ♥ Q C ICHEP22 13/15

A B M A B M

Other BSM: a gallery

Other BSM: a gallery

Conclusions

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Extendability in energy and polarised beams
 - Detectors factors more precise, hermetic, and with no need for triggering
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - SUSY: High mass vs. Low Δ(M). If SUSY is reachable at ILC, it means 5 σ discovery, and precision measurements. This input might be just what is needed for LHC to transform a 3 σ excess to a discovery of states beyond the reach of ILC.
 - Dark matter, FIPS, ...: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling.

Conclusions

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Extendability in energy and polarised beams
 - Detectors factors more precise, hermetic, and with no need for triggering
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - SUSY: High mass vs. Low $\Delta(M)$. If SUSY is reachable at ILC, it means 5 σ discovery, and precision measurements. This input might be just what is needed for LHC to transform a 3 σ excess to a discovery of states beyond the reach of ILC.
 - Dark matter, FIPS, ...: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling.

イロト 不得 トイヨト イヨト 正言 ろくの

Thank You !

Mikael Berggren (DESY)

BSM searches at with ILD at ILC

ICHEP22 15/15

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Backup

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BACKUP SLIDES

· < □ > < @ > < E > < E > < E = < 0 < 0

Only WIMPs

- What if this is the only accessible NP ?
- Search for direct WIMP pair-production at collider : Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing" ⇒ Mono-X search.
 - At ILC: $e^+e^- \rightarrow \chi \chi \gamma$, ie. X is a γ

- ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis, in preparation.
- Model-independent Effective operator approach to "?"
 - Analyse as an effective four-point interaction. Strength = Λ .
 - Allowable if direct observation the mediator is beyond reach. Mostly true at ILC, but not at LHC !
 - Write down all possible Lorentz-structures of the operators.
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

ILC and LHC exclusion

- Examples:
- Vector operator ("spin independent"), Note how useful beam-polarisation is!
 At LHC, EffOp can't be used
 - \Rightarrow use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

ILC/LHC complementarity

- LHC: coupling to hadrons, ILC: coupling to leptons.
- LHC has best M_{χ} reach, ILC best M_{med} reach

Aspects of the spectrum

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\tilde{\chi}_1^{\pm}}$ small, while $\Delta_{\tilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is *exactly* in the middle of mass-gap between the first and second neutralino.

Aspects of the spectrum

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\tilde{\chi}_1^{\pm}}$ small, while $\Delta_{\tilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is *exactly* in the middle of mass-gap between the first and second neutralino.

Aspects of the spectrum

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\tilde{\chi}_1^{\pm}}^{\pm}$ small, while $\Delta_{\tilde{\chi}_2^{0}}^{\pm}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is *exactly* in the middle of mass-gap between the first and second neutralino.

• Higgsino LSP.

- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M₁ and M₂ >> μ
- Same for Wino LSP.

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M₁ and M₂ >> μ

Same for Wino LSP.

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M₁ and M₂ >> μ
- Same for Wino LSP.

- Vary relative signs of μ , M_1 , and M_2
- For $\mu > M_2$
- or μ < M₂
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

- Vary relative signs of μ , M_1 , and M_2
- For $\mu > M_2$
- or µ < M₂</p>
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

Why is the decay-mode an issue? Here's why :

Шщ

- Vary relative signs of μ , M_1 , and M_2
- For *μ* > *M*₂
- or µ < M₂
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

- Vary relative signs of μ , M_1 , and M_2
- For *μ* > *M*₂
- or µ < M₂
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

- Vary relative signs of μ , M_1 , and M_2
- For *μ* > *M*₂
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

- Vary relative signs of μ , M_1 , and M_2
- For $\mu > M_2$
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

Why is the decay-mode an issue? Here's why :

E

- Vary relative signs of μ , M_1 , and M_2
- For *μ* > *M*₂
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the *intersection* of the two plots, not the *union*!

