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Introduction

The ILC strong points for searches

e+e− collider with ECMS = 250 - 500 (- 1000) GeV, and polarised
beams
e+e− means EW-production⇒ Low background.

Detectors w/ ∼ 4π coverage.
Rad. hardness not needed: only few % X0 in front of calorimeters.
No trigger

e+e− means colliding point-like objects⇒ initial state known
20 year running→ 2 ab−1 @ 250 GeV, 4 ab−1 @ 500 GeV.
Construction under political consideration in Japan.
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Introduction

ILC Detectors: the ILD and SiD concepts

Physics requirements, SM and BSM:
σ(1/p⊥) = 2× 10−5 GeV−1

JER ∼ 3-4%
σ(d0) < 5µ
hermeticity down to 5 mrad
triggerless operation.

Leads to key features of the detector:
High granularity calorimeters
optimised for particle flow
Power-pulsing for low material.

Both concepts can deliver!
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Introduction

BSM at ILC

In this talk: Concentrating on
SUSY:

The most complete theory of BSM.
Most studied model with serious simulation: In most cases, full
simulation of ILD, with all SM backgrounds, all beam-induced
backgrounds included.
Serves as a boiler-plate for BSM: almost any new topology can be
obtained in SUSY...
Under some stress(?) by LHC. However, ILC offers

Complete coverage of Compressed spectra - the most interesting
case.
Loop-hole free searches.

+ A few slides on non-SUSY BSMs...
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SUSY: What do we know ?

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.
Except for 3rd gen. squarks, the coloured sector doesn’t enter the
game.
Many models and the global set of constraints from observation
points to a compressed spectrum.
So, most sparticle-decays are via cascades, with small ∆(M) at
the end.
For this, current LHC limits are for specific models. LEP2 sets the
scene.
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SUSY: What do we know ?

Why compressed spectra ?

Higgsino or Wino LSP:
If the LSP is Higgsino or a Wino,
several other bosinos must be close
to the LSP.
⇒ Compressed spectrum.

In addition: if the LSP is higgsino:
Natural SUSY:

m2
Z = 2

m2
Hu

tan2 β−m2
Hd

1−tan2 β
− 2 |µ|2

Low fine-tuning⇒ µ = O(mZ )

Bino LSP: Overabundance of DM.
Need balance between early
universe production and decay.
One compelling option is
τ̃ Co-annihilation. For this to
contribute: Early universe density of
τ̃ and χ̃0

1 similar⇒ Compressed
spectrum.
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SUSY: What do we know ?

Why compressed spectra ? Global fits

Low ∆(M) !

pMSSM11 fit by Mastercode to
LHC13/LEP/g-2/DM(=100% LSP)/precision observables
(arXiv:1710.11091):
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SUSY: What do we know ? SUSY with no loop-holes

SUSY@ILC: Loop-hole free searches
All is known for given masses, due to
SUSY-principle: “sparticles couples as
particles”.
This doesn’t depend on the SUSY breaking
mechanism !
Obviously: There is one NLSP, and it must
have 100 % BR to it’s SM-partner and the
LSP.
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Cover entire parameter-space in a few plots
No fine-print!
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SUSY@ILC: non-Exclusion = Discovery

ILC projection for Higgsino or τ̃ NLSP

From arXiv:2002.01239
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From arXiv:2105.08616
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Note:
Discovery and Exclusion are almost the same !
Close to complete coverage of compressed
spectra !
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SUSY@ILC: non-Exclusion = Discovery

At ILC: discovery in a week...

ILD fast detector simulation studies: Selectrons in a co-annihilation
model (EPJC 76,183 (2016)), after:

5 fb−1 ≈ 1 week
and

500 fb−1 ≈ 2 years.

Will never be in “3 σ limbo” !
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ILC = the LEP of SUSY

ILC = the LEP of SUSY

ILD detector simulation studies:

Typical slepton signal (τ̃ and
µ̃), in a co-annihilation model
(FastSim). (EPJC 76,183 (2016))
Typical chargino signal...
... and typical neutralino
signal, higgsino-LSP model,
with moderate ∆M (FullSim)
(Phys Rev D 101,095026 (2020))
Typical chargino/neutralino
signal, higgsino-LSP model,
with very low ∆M
(Fast/FullSim).
(EPJC 73,2660 (2013))
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In all cases:
SUSY masses to sub-percent
Cross-sections to few percent
Also: Branching fractions,
mixing angles, sparticle spin ...
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ILC = the LEP of SUSY

SUSY bosinos - All-in-one

,
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HL-LHC projection

500 GeV, 1 TeV any modelILC

LEP

No M1 - M
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ine

:

ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1
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Conclusions

Conclusions

Sometimes, the capabilities for the direct discovery of new
particles at the ILC exceed those of the LHC, since ILC provides

Well-defined initial state
Clean environment without QCD backgrounds
Extendability in energy and polarised beams
Detectors factors more precise,hermetic, and with no need for
triggering

Many ILC - LHC synergies from energy-reach vs. sensitivity.
SUSY: High mass vs. Low ∆(M). If SUSY is reachable at ILC, it
means 5 σ discovery, and precision measurements. This input
might be just what is needed for LHC to transform a 3 σ excess to a
discovery of states beyond the reach of ILC.
Dark matter, FIPS, ...: Leptophilic vs. Leptophobic - Higher mass
and higher coupling vs. lower mass and lower coupling.
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Conclusions

Thank You !
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Only WIMPs

What if this is the only accessible NP ?
Search for direct WIMP pair-production at
collider : Need to make the invisible visible:

Require initial state radiation which will
recoil against “nothing”⇒ Mono-X search.
At ILC: e+e− →χχγ, ie. X is a γ

?

χ

χ

+
e

-
e

γ

ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis,in preparation.
Model-independent Effective operator approach to “?”

Analyse as an effective four-point interaction. Strength = Λ.
Allowable if direct observation the mediator is beyond reach. Mostly
true at ILC, but not at LHC !

Write down all possible Lorentz-structures of the operators.
Exclusion regions in Mχ/Λ plane, for each operator.



ILC and LHC exclusion

Examples:
Vector operator (“spin
independent”), Note how
useful beam-polarisation is!

At LHC, EffOp can’t be used
⇒ use “simplified models”
Need to translate Λ to Mmed :
Mmed =

√
gSMgDMΛ

ILC/LHC complementarity

LHC: coupling to hadrons,
ILC: coupling to leptons.

LHC has best Mχ reach, ILC best
Mmed reach

 [GeV]χM
50 100 150 200 250

 [G
eV

]
95

Λ

500

1000

1500

2000

2500 ILD

-1vector operator, 500fb
) = (80%,-60%)+,e

_
P(e

) = (80%,-30%)+,e
_

P(e
) = (80%,   0%)+,e

_
P(e

) = (  0%,   0%)+,e
_

P(e

 

 [GeV]medM
0 500 1000 1500

 [G
eV

]
χ

M

0

100

200

300

400

500
 = 1

DM
 = 0.25,  g l

sm
 = g

 q

sm
vector,  g

CMS, 1706.03794

-1ILC, 500fb

-1ILC, 4ab

ILD



Aspects of the spectrum

Another angle: ∆(M) for χ̃±1 vs. that of χ̃0
2: Important experimentally

Three regions:
Bino: Both the same, but
can be anything.
Wino: ∆

χ̃±
1

small, while ∆
χ̃0

2
can be anything.
Higgsino: Both often small

But note, seldom on the
“Higgsino line”, ie. when the
chargino is exactly in the
middle of mass-gap between
the first and second neutralino.
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Key element for “Disappearing tracks”: ∆(M)

Higgsino LSP.
Zoom in. The line is the
absolute limit mentioned in the
BB.
Reason: 1703.09675
considers only SM effects on
the mass-splitting, ie. that M1
and M2 >> µ

Same for Wino LSP. 0
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Bino LSP: BRs

Why is the decay-mode an issue? Here’s why :

Vary relative signs of µ, M1,
and M2

For µ > M2

or µ < M2

Conclusion: Whether the Z or
the H decay-mode of χ̃0

2
dominates is pure speculation
and
The exclusion-region is the
intersection of the two plots,
not the union!
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