Status of Polarized Electron & Positron Source R&D at Jefferson Lab

ILC-IDT Working Group 2 (WG2)

Joe Grames July 18, 2022

Only published materials may be reproduced, other materials require permission.

Polarized e-

High Polarization Photocathodes

- Molecular Beam Epitaxy (MBE)
- Molecular Organic Vapor Deposition (MOCVD)
- Chemical Beam Epitaxy (CBE)

High Voltage Devices

- 200 300 kV Wien filters
- 500 kV inverted insulator
- 300 kV polarized 1 mA photogun

Polarized e+

- Positron physics scope (today)
- CEBAF after 12 GeV e-
- Positron beams concept

Ion Damage Experiments

- Biased anode mitigation
- Robust chemistry
- Gun voltage dependence

Simulation & Modeling

- GPT ion generation & spin tracking
- Lifetime evolution model
- Spot size evolution model

High Polarization Photocathodes

- High polarization GaAs/GaAsP photocathodes fabricated by SVT Assoc. using MBE have been used at JLab for many years (QE~1%, P>85%)
- SVT no longer provides these for >5 years. PI has relocated to China and new business Aachen Optoelectronics.
- JLab is purchasing material at new fabrication facility for evaluation by end of 2022

Strained Superlattice Photocathode Aaron Moy, SVT Assoc and SLAC, PESP2002

High Polarization Photocathodes

- US DOE supporting development of photocathode fabrication methods to address US supply chain
- Jefferson Lab has two funded projects
 - Molecular Organic Chemical Vapor Deposition of SSL/DBR-SSL (JLab, ODU, BNL)
 - Chemical Beam Epitaxy growth of GaAs/GaAsP Superlattice Photocathodes (JLab & UCSB)
- Additional proposal "Photocathodes For High Average Current Applications" (Sandia, BNL, JLab)

Molecular Organic Chemical Vapor Deposition **growth of DBR GaAs/GaAsP Superlattice Photocathodes** (Matt Poelker, with Old Dominion University and BNL)

High gradient Wien Filters

- The original vertical and horizontal CEBAF Wien filters were upgraded for higher voltage operation to be compatible with 200 keV beam
- Both Wiens have been tested to 22 kV per electrode for 100 deg spin rotation angle with 15 mm gap for 200 keV beam
- A third Wien filter was built for UITF with reduced electrode gap and has been tested to 22 kV per electrode for 90 deg spin rotation for 300 keV beam
- The CEBAF Wiens are operational with 130 keV beam awaiting operations with 200 keV beam
- The UITF Wien will be tested with 180 keV in the coming days, awaiting opportunities to test with 300 keV beam later on
- A patent has been filed for incorporating active pumping in a Wien filter using the Penning cell concept and getter plates, emulating an ion pump during Wien operations.

3.9 MV/m with 13 mm gap

3.4 MV/m

5.7 MV/m

500 kV cable-insulator concept* with intervening SF_6 layer has been designed with the intent to power a future 300 kV DC polarized photogun with the following requirements:

- Project Goals
 - Interface capable of 500 kV
 - Full beam transmission at 10 mA CW
 - 1x10⁻¹² Torr dynamic vacuum at full current
 - No detectable field emission at 350 kV (requires capability of 500 kV reach for high voltage conditioning)

Gradients and potential at 500 kV

C. Hernandez-Garcia et al., "Inverted Geometry Ceramic Insulators in High Voltage DC Electron Guns for Accelerators", in proceedings of the 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena-Vancouver-Canada

Simulations and model by G. Palacios-Serrano, JLab Jefferson Lab

*Funding from DOE NP Office of Science, FOA 2020

The cable-plug concept* is currently under testing in the Gun Test Stand (GTS)

- The assembly reached 190 kV during initial testing
- Higher voltage has been hampered by over-current events
- The cable-plug assembly has been tested on its own and appears to be fine
- The ceramic insulator is suspect of arcing over

*Funding from DOE NP Office of Science, FOA 2020

190 kV

An FOA proposal was submitted to develop a 300 kV DC gun for generating > 1 mA CW spin-polarized electron beam as driver for positron beam production

The photogun will be designed to meet the following performance requirements:

- Beam polarization > 85 % Beam current > 1 mA CW
- Charge lifetime > 1000 Coulombs

Technical challenges:

- Competing design factors play important roles in:
 - Increasing present charge lifetime observed in CEBAF from ~ 200 C at 0.2 mA CW, to ~1000 C at > 1 mA CW.
- Vacuum conditions:
 - Demonstrate $< 1 \times 10^{-12}$ Torr. Chamber materials choices for low outgassing, modeling to minimize surface area while keeping electrode gradient < 10 MV/m at 300 kV.
- Mitigate QE degradation from ion-back bombardment:
 - Large laser spot size on the photocathode (spread out damage)
 - Biased anode (repel ions)
 - High (> 250kV) operating voltage (decrease ionization yield)
- 300 kV operations without field emission :
 - Field-emitted striking the vacuum chamber desorb gas that deteriorates QE
 - Keep max gradient < 10 MV/m at 350 kV

C. Hernandez-Garcia, April 6 2022

The high current electron gun for positron beam generation is envisioned to be based on the GTS gun design + improvements

6 in

- Larger electrode to accommodate larger laser spot size and to reduce gradient
- Larger vacuum chamber to accommodate larger electrode
- Biased and tilted anode to repel ions and compensate beam vertical kick
- Improved NEG system using ZAO 1400 I/s SAES new modules

The GTS gun uses alkali-based photocathodes to generate up to 5 mA CW 300 keV un-polarized electron beams

Photocathode Prep chamber

C. Hernandez-Garcia et al., "Compact – 300 kV dc inverted insulator photogun with biased anode and alkali-antimonide photocathode", PRAB **22**, 113401 (2019)

Ion Damage Experiment at CEBAF

- Many factors contribute to reduction of photocathode lifetime ٠ (contamination, bad chemistry, poor vacuum, laser heating, field emission, ...)
- In "best technology" gun mitigating ion bombardment remains opportunity for improvement
- At CEBAF tested efficacy of biasing gun anode to repel • downstream ions from reaching photocathode

IMPROVING THE OPERATIONAL LIFETIME OF THE CEBAF PHOTO-**GUN BY ANODE BIASING***

J. T. Yoskowitz[†], G. A. Krafft, G. Palacios-Serrano, S. Wijethunga Old Dominion University, Norfolk, Virginia, 23529, USA J. Grames, J. Hansknecht, C. Hernandez-Garcia, M. Poelker, M. Stutzman, R. Suleiman Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA S. B. van der Geer, Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven, The Netherlands

Photocathode lifetime increased by >50% when biasing the photogun anode to repel downstream ions PhD Thesis work of Josh Yoskowitz, manuscript in preparation for Phys. Rev Accel. and Beams Jefferson Lab

UITF 10 MeV Polarized Electron Accelerator

- UITF 10MeV beam irradiation of water with 1,4-dioxane contamination
 - -Polarized photogun, Wien filter an Mott scattering polarimeter for photocathode and lifetime studies
 - -Compton polarimeter for SRF polarized gun test at BNL

Ion Damage Experiments at the UITF

Using UITF to probe photocathode lifetime

- JLab scientist Max Bruker is testing hypothesis that higher gun voltage is expected to lead to higher charge lifetime
- Testing whether the Cornell NEA activation leads to a more robust chemically stable barrier to ion damage a photogun.

Pulsar Physics General Particle Tracer (GPT) development at JLab

Development of GPT code for injector applications, working closely with Bas van der Geer

- GPT Ions includes realistic electron impact ionization cross-sections and tracking
- GPT Spin new version of code which incorporates spin tracking (e-, e+, p, etc.)

SIMULATING ELECTRON IMPACT IONIZATION USING A GENERAL PARTICLE TRACER (GPT) CUSTOM ELEMENT*

J. T. Yoskowitz[†], G. A. Krafft, Old Dominion University, Norfolk, Virginia, 23529, USA
 S. B. van der Geer, Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven, The Netherlands
 J. Grames, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
 R. Montoya Soto, Departamento de Física, Universidad de Guanajuato, Leon, 37150 Mexico
 C. A. Valerio Lizarraga
 Facultad de Ciencias Físico-matemáticas Universidad Autónoma de Sinaloa, 80010 Mexico

IPAC'21 (WEPAB105)

M. Stefani and B. van der Geer, New Spin Tracking Software Developed For General Particle Tracer, Proc. of SPIN 2021

New Simulations using GPT – Ions

To dynamically explain and predict QE degradation, developing a dynamic mode which can be calibrated to reality.

New Simulations using GPT – Ions

Work of Victor Manuel Lizarraga Rubio, Univ. Sinola Mexico

To predict the fraction of ions which return to the laser location as a function of laser position and laser size

Joe Grames et al., "Milliampere beam studies using high polarization photocathodes at the CEBAF Photoinjector", Proc. of PSTP 2017

Polarized e-

High Polarization Photocathodes

- Molecular Beam Epitaxy (MBE)
- Molecular Organic Vapor Deposition (MOCVD)
- Chemical Beam Epitaxy (CBE)

High Voltage Devices

- 200 300 kV Wien filters
- 500 kV inverted insulator
- 300 kV polarized 1 mA photogun

Polarized e+

Polarized positrons beams for CEBAF

- Physics scope
- CEBAF after 12 GeV e-
- Positron injector
- Technical workshop

Ion Damage Experiments

- Biased anode mitigation
- Robust chemistry
- Gun voltage dependence

Simulation & Modeling

- GPT ion generation & spin tracking
- Lifetime evolution model
- Spot size evolution model

Positron physics motivation

The EPJ A Topical Issue about an experimental positron program at CEBAF has been released

Positron Partial Program Summary

Experiment		Measurement Configuration			Beam Parameters						
Label	Short	L L II	Detector	Target	Delevity	p	P	Ι	Time	PAC	
(EPJ A)	$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$	nan	Detector	Target	Folanty	$({ m GeV}/c)$	(%)	(μA)	(d)	Grade	
Two Photon Exchange Physics											
57:144	H(e, e'p)	В	$CLAS12^+$	H_2	$+/{s}$	2.2/3.3/4.4/6.6	0	0.060	53		
57:188	$H(\vec{e}, e'\vec{p})$	Α	ECAL/SBS	H_2	$+/{p}$	2.2/4.4	60	0.200	121		
57:199	r_p	р	DDed II	H_2		0.7/1.4/2.1	0	0.070	40		
	r_d		r Rau-II	D_2	-	1.1/2.2	0	0.010	39		
57:213	$\overrightarrow{\mathrm{H}}(e,e'p)$	Α	BB/SBS	$N\overline{H}_3$	$+/{s}$	2.2/4.4/6.6	0	0.100	20		
57:290	$\mathrm{H}(e,e'p)$	A	HRS/BB/SBS	H_2	$+/{s}$	2.2/4.4	0	1.000	14		
57:319	SupRos	Α	$_{ m HRS}$	H_2	$+/{p}$	0.6 - 11.0	0	2.000	35		
58:36	A(e,e')A	Α	HRS	He	$+/{p}$	2.2	0	1.000	38		
Nuclear Structure Physics											
57:186	p-DVCS	В	CLAS12	H_2	$+/{s}$	2.2/10.6	60	0.045	100	C2	
57:226	n-DVCS	В	CLAS12	D_2	$+/{s}$	11.0	60	0.060	80		
57:240	p-DDVCS	Α	SoLID^{μ}	H_2	$+/{s}$	11.0	(30)	3.000	100		
57:273	He-DVCS	В	CLAS12/ALERT	$^{4}\mathrm{He}$	$+/{s}$	11.0	60				
57:300	p-DVCS	C	SHMS/NPS	H_2	+	6.6/8.8/11.0	0	5.000	77	C2	
57:311	DIS	A/C	HRS/HMS/SHMS		$+/{s}$	11.0					
57:316	VCS	С	HMS/SHMS	H_2	$+/{s}$		60				
Beyond the Standard Model Physics											
57:173	C_{3q}	A	SoLID	D_2	$+/{s}$	6.6/11.0	(30)	3.000	104	D	
57.952	IDM	р	PADME	\mathbf{C}		11.0	0	0.100	180		
57:255	LDM	Ь	ECAL/HCAL	$PbW0_4$	+	11.0	0	0.100	120		
57:315	CLFV	Α	$SoLID^{\mu}$	H_2	+	11.0					
Total (d) 111								1121			
CLAS10 [±]											
$CLAS12^+ \equiv CLAS12^+$ Assuming a Detector											
$SOLID' \equiv$	Solution = Solution $2C$ we also be an and										
+ Seconda	+ Secondary positron 50 Weeks/year of beam and										
Primary electron b 50% accelerator efficiency this is											
(30) Do not require pc											
4.8 years of running.											

Jefferson Lab

CEBAF Upgrade(s) beyond 12 GeV e-

• Polarized positrons capability

-Near term, ~5 years, 12 GeV, multi-hall

- Imagine 100 300 MeV e- injector
- Energy upgrade experimental program
 - -22 GeV, a decade from now, multi-hall
 - Can have an intermediate stage of 17 GeV
 - Replace two arcs per side with new FFA permanent magnet arcs
 - (Single pair of arcs is considered too)
 - Requires ~600 MeV e- injector
 - This mean a shielded vault of ~70x10m

An electron/positron injector vault is required for both upgrades

New underground vault + short beam line

Green option is presently more cost effective and provides options for staging positron and energy upgrade

Tunnel to East Ar

- Conventional Facilities construction experts assessment and design optimization
 - Options 2a and 2b assessed
 - Option 2c suggested and evaluated
 - Feasibility confirmed
- Rough cost estimates for hardware are in the process

LERF VAULT

VAULT FLOOR

Staging electron/positron injector at the FEL

Polarized e+, big picture

- Hardware needed:
 - -High current polarized e- source
 - A cryomodule to accelerate e-
 - -An e+ target-source and collection system
 - -A cryomodule to accelerate e+

