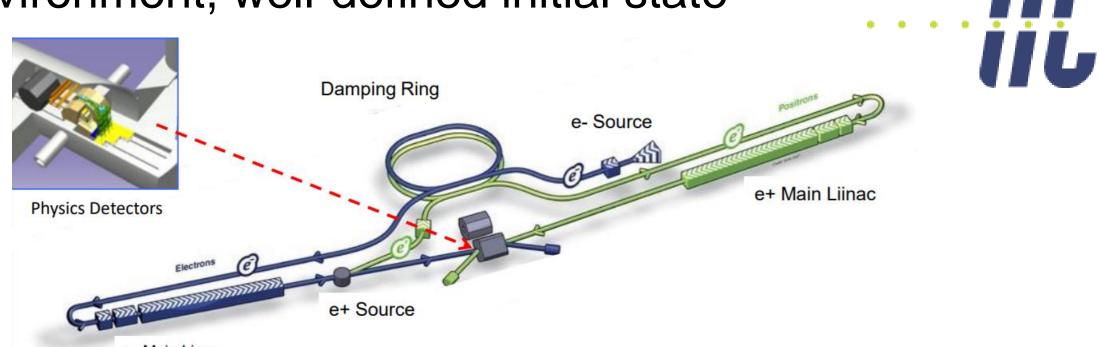

Stau study at the ILC and its implication for the muon g-2 anomaly

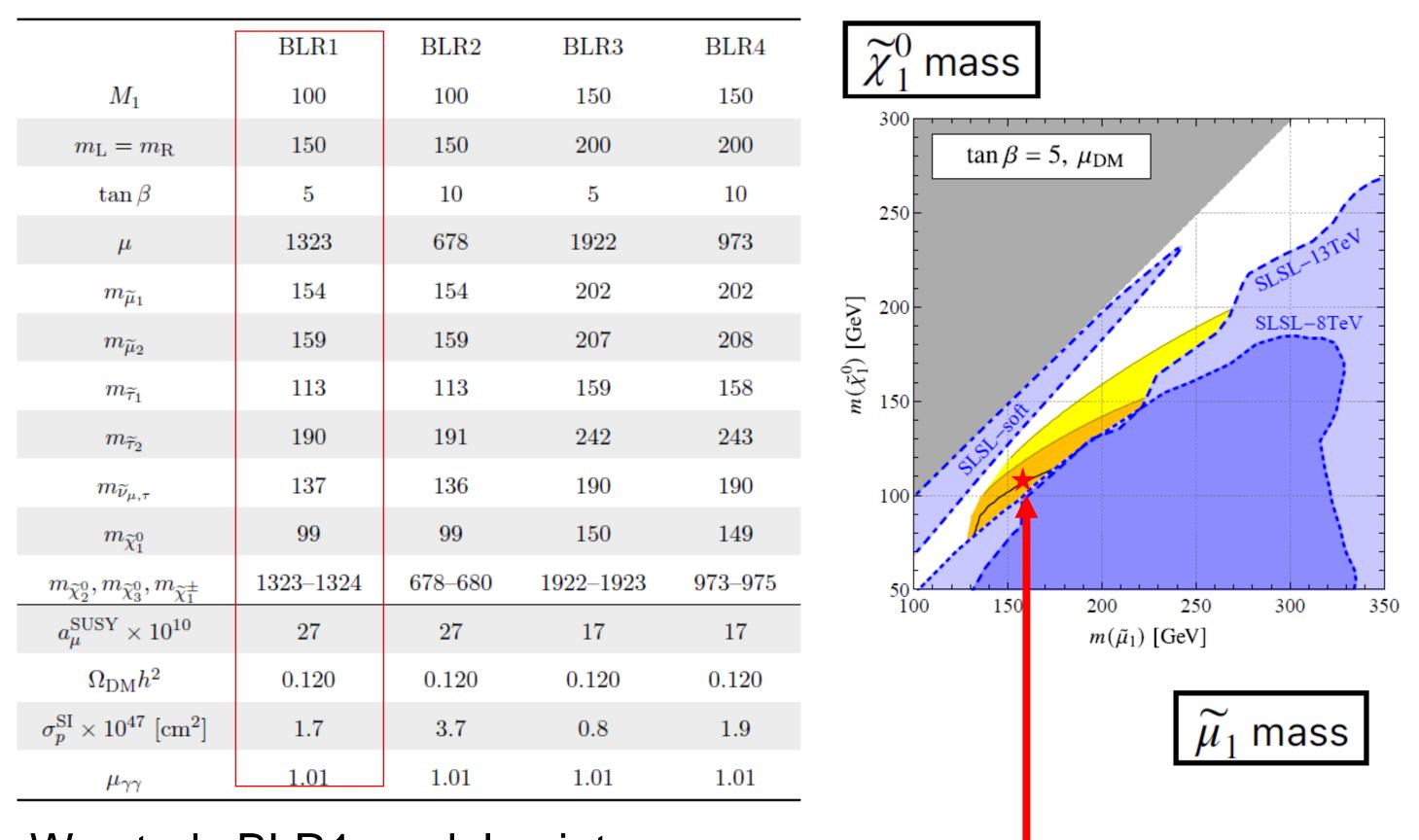
Shin-ichi Kawada (KEK) [skawada@post.kek.jp]

Introduction: muon g-2 anomaly


4.2σ discrepancy from the SM prediction---> New physics?

or "BLR" scenario)

Many models proposed to explain. In this contribution, we pick up the interpretation of [2104.03217]: SUSY interpretation (pure-Bino-contribution scenario,


International Linear Collider (ILC)

- Proposed future e^+e^- linear collider
- $-\sqrt{s}$ = 250 GeV (upgradable to 500 GeV, 1 TeV)
- Polarized beams ($|P_e^-| = 80\%$, $|P_e^+| = 30\%$)
- Clean environment, well-defined initial state

We study the case at ILC 500 GeV and 2 beam polarization cases. eLpR: $(P_{e^-}, P_{e^+}) = (-80\%, +30\%)$, eRpL: $(P_{e^-}, P_{e^+}) = (+80\%, -30\%)$

Model point

We study BLR1 model point.

This model can explain the muon g-2 anomaly with $1\sigma(2\sigma)$ and dark matter relic density $(\Omega_{\chi_1^0} = \Omega_{\rm dark\ matter})$.

Bino-smuon diagram

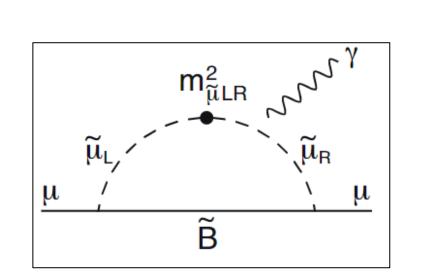


Figure: Bino-smuon loop diagram contributing to a_{μ}^{SUSY} . We denote this contribution by $a_{\mu}^{(\tilde{B})}$.

When we have Higgsino mass parameter $\mu \gtrsim 1$ TeV and light masses of Binos and smuons (100 - 200 GeV), $a_{\mu}^{SUSY} \cong a_{\mu}^{(\tilde{B})} \cong \Delta a_{\mu}$.

For the reconstruction of $a_{\mu}^{(B)}$, we need the following 4 numbers.

- (1) masses of smuons (both left- and right-handed)
- (2) Bino (= the lightest neutralino) mass
- (3) lepton-slepton-Bino couplings
- (4) left-right mixing parameter of the smuons $m_{\widetilde{\mu}LR}^2$

In our paper, we used the previous results for (1) - (3).

For (4), it is difficult to get $m_{\widetilde{\mu}LR}^2$, but we can expect an equation $m_{\widetilde{\mu}LR}^2 = \frac{m_{\mu}}{m_{\tau}} m_{\widetilde{\tau}LR}^2$ by assuming a flavor universality.

Therefore, we need stau mixing measurement.

Physics analysis

SUSY MC sample: DELPHES + ILC generic detector card SM backgrounds (in total ~210M MC events)

- $\gamma\gamma \rightarrow 2f$ (2-photon scattering process): SGV fast simulation
- all other: full detector simulation with ILD model

Event selection: 2 τ -jets + no isolated leptons + kinematical cuts \checkmark

eLpR 1.6 ab⁻¹ SM bkg SUSY bkg $\widetilde{ au_1}\widetilde{ au_1}$ $\widetilde{\tau_1}\widetilde{\tau_2}$ $\widetilde{ au_2}\widetilde{ au_2}$ No cuts $1.488*10^{5}$ $4.647*10^{4}$ $2.621*10^{4}$ $5.539*10^{5}$ $8.770*10^{7}$ $4.283*10^{9}$ 9457 3397 2961 4456 7681 1764 After cuts SM bkg eRpL 1.6 ab⁻¹ SUSY bkg $\widetilde{ au_1}\widetilde{ au_2}$ $\widetilde{ au_1}\widetilde{ au_1}$ $\widetilde{ au_2}\widetilde{ au_2}$ $1.386*10^5$ $4.211*10^4$ $2.075*10^4$ 1.286*10⁶ $4.727*10^7$ $4.283*10^9$ No cuts 4091 1001 8564 2706 8940 1764 After cuts

Fit

True

54.5 GeV

54.5 GeV

149.9 GeV

149.9 GeV

Endpoint extraction

Figure: Endpoint fit of the stau energy distribution (eLpR)

Summary

- The muon g-2 anomaly can be explained with SUSY interpretation
- Studied the feasibility of SUSY measurement at ILC 500 GeV

 $\widetilde{\tau_1}$ endpoint, eLpR 53.31 \pm 0.55 GeV

 $\tilde{\tau}_1$ endpoint, eRpL 53.17 \pm 0.67 GeV

 $\widetilde{\tau_2}$ endpoint, eLpR 149.5 \pm 1.7 GeV

 $\widetilde{\tau_2}$ endpoint, eRpL 150.4 \pm 1.2 GeV

- Performed realistic detector simulation and physics analysis
- Can reconstruct the SUSY contribution to muon g-2 anomaly with 1% precision at our model point

Results of likelihood analysis

Inputs:

- stau endpoints
- cross-sections of each process
- $M_{\chi_1^0} = 99.3 \pm 0.1$ GeV (taken from earlier analysis)

	Fit	True
$M_{\widetilde{ au_1}}$	$112.8 \pm 0.2 \text{ GeV}$	113.2 GeV
$M_{\widetilde{ au_2}}$	189.9 ^{+0.8} _{-0.7} GeV	189.8 GeV
$\cos heta_{ ilde{ au}}$	0.703 ± 0.010	0.703
$-m_{ ilde{ au}LR}^2$	$(1.17 \pm 0.01) \times 10^4 \text{ GeV}^2$	11606 GeV ²
$-m_{\widetilde{\mu}LR}^2$	693 ⁺⁹ ₋₈ GeV ²	690 GeV ²
$a_{\mu}^{(\tilde{B})}$	$(27.5 \pm 0.4) \times 10^{-10}$	27.5 * 10 ⁻¹⁰

References

- Snowmass White Paper: 2203.07056
- 2104.03217
- PLB **728** (2014) (1310.4496)