European ILC community meeting Wednesday 24 Aug 2022, 10:00 → 12:00 Europe/Zurich						
Descript	on https://desy.zoom.us/j/99341718959 Meeting ID: 993 4171 8959 Passcode: 190525					
10:00 → 10:20	Welcome Including impressions from Snowmass Speaker: Steinar Stapnes (CERN)	③20m 🕑 ▼				
10:25 → 10:45	International discussions and IDT news Speaker: Tatsuya Nakada (EPFL - Ecole Polytechnique Federale Lausanne (CH))	© 20m 🕑 ▾				
10:50 → 11:20	European planning for priority WPs Speaker: Steinar Stapnes (CERN)	𝔅 30m 🕑 ▾				
11:20 → 11:40	WG3, ECFA panels WG2, WG3, Snowmass, ECFA panels and conference, Conferences Speakers: Aidan Robson (University of Glasgow (GB)), Jenny List (Deutsches Elektronen-Synchrotron (DE))	③20m 🗹 ▾				
11:40 → 11:50	AOB and next meeting	©10m 🕑 ▾				

European planning

News/updates:

- Still optimimism for MEXT funding request to the ILC Technology Network (aka Priority WPs)
- Meet with Fabiola and Mike Lamont Friday this week
- In the process of extending the CERN-KEK IDT agreement
- LDG meeting 5.9
- More refined planning on the IDT WG2 side (see examples at link): <u>https://agenda.linearcollider.org/event/9724/</u> (and some examples on next slides) – expected European efforts not always clear

IDT-WG2

			IDT E	B					
		Shir Be	IDT W Michizor nno List (G2 no (Chair) (Deputy)					
ML&SRF group		DR/BDS/Dump	group			_			
Yasuchika Yamamoto	КЕК	Toshiyuki Okugi Karsten Buesser	KEK DESY						
Sergey Belomestnykh	FNAL	Philip Burrows Angeles Faus-Golfe	U. Oxford LAL			Sour Kaoru Yokova	ces group		
Nuria Catalan	CERN	Andrea Latina	CERN	Dump sub-gr	oup	Jim Clarke	STFC		
Enrico Cenni	CEA	Kiyoshi Kubo	KEK	Nohuhiro		Steffen Doebert	CERN		
Dimitri Delikaris	CERN	Jenny List	DESY	Terunuma	KEK	Joe Grames	JLAB	Civil engineerin	ig group
Luis Garcia Tabares	CIEMAT	Thomas		Toshiyuki Okugi KFI	KEK	Hitoshi Hayano Masao Kuriki	KEK	Nobuhiro Terunuma	KEK
Rongli Geng	ORNL	Markiewicz	SLAC		KEK.		U. Hiroshima	John Andrew	CERN
Hitoshi Hayano	KEK	Brett Parker	BNL	Crab sub-gro	oup	Benno List	DESY	Osborne	CEININ
Bob Laxdal	Triumf	Ivan Podadera	CIEMAT		CTEC	Jenny List	DESY	Tomoyuki Sanuki	U. Tohoku
Matthias Liepe	Cornell	David L. Rubin	Cornell	Peter Micintosh	SIFC	Gudrid			
Peter McIntosh	STFC	Nikolay Solyak	FNAL	Yasuchika	KEK Moortga	Moortgat-Pick	∪. ⊓amburg		
Laura Monaco	INFN Milano	Nobuhiro	KEK	Yamamoto		Tsunehiko Omor	i KEK		
		Terunuma	KLK			Sabine Riemann	DESY		
Olivier Napoly	CEA	Glen White	SLAC			Peter Sievers	CERN -retired		
Sam Posen	FNAL	Kaoru Yokoya	KEK			Tohru Takahashi	U. Hiroshima		
Robert Rimmer	JLAB	Mikhail Zobov	INFN LNF						
Marc C. Ross	SLAC								
Kensei Umemori	KEK								
Hans Weise	DESY								

WP-prime 3: Crab Cavity Development with down-selection

- RF property simulation to optimize cavity design
- Pre-down-selection to choose two primary candidates
- Development and evaluation of two prototype cavities
- Demonstration of synchronized operation with two prototypes
- Down-selection to choose final cavity design
- Cryomodule design based on final cavity design

Item	Recent specification (after TDR)			
Beam energy	125 GeV (e ⁻)			
Crossing angle	14 mrad			
Installation site	14 m from IP			
RF repetition rate	5 Hz			
Bunch train length	727 µsec			
Bunch spacing	554 nsec			
Operational temperature	2.0 K (?)			
Cavity frequency	1.3/3.9 GHz			
Total kick voltage	1.845/0.615 MV			
Relative RF phase jitter	0.023/0.069 deg rms (49 fs rms)			

WP-prime 4: Electron Gun

The electron gun consists of

- ➤ High-voltage photo gun
- ➤ Drive laser system
- GaAs/GaAsP Photocathode
- High-voltage gun is the most urgent item
 - ➤ The gun voltage in TDR is 200 kV. A higher voltage desirable.
 - Meaningful technical progresses since TDR would be reflected in a new design
 - New GaAs gun based on lessons learned from 350 kV CsKSb magnetized dc photogun

WP-prime 6: Rotating Target for Undulator Scheme

◆Target specification

- > Titanium alloy, 7mm thick (0.2 X_0), diameter 1m
- ➤ Rotating at 2000 rpm (100 m/s) in vacuum
- ➤ Photon power ~60 kW, deposited power ~2 kW
- ➤ Radiation cooling
- ➤ Magnetic bearings
- R&D to be done as WP-prime
 - Design finalization, partial laboratory test, mock-up design (in the first 2 years)
 - Magnetic bearings: performance, specification, test (in the remaining years)

Target material

α/β phase transitions in Ti-6Al-4V:

Principal Layout: Ti-Wheel with a Diameter of 1.0 m, rotating at 100 m/s, 2000 rpm.

Ti-Target Sector Modules, mounted onto a «Carrier Wheel»

WP-prime 7: Focusing System for Undulator Scheme

- Possible candidates are: (a) Pulsed solenoid, (b) Plasma lens
- The strongest candidate is (a) pulsed solenoid.
- R&D items to be done as WP-prime
 - Detailed simulations for (a) (already on-going)
 - ➤ Principal design for a prototype pulsed solenoid
 - ➤ Field measurements with 1kA (pulsed and DC) and with 50kA both in a single pulse mode and finally in a 5ms pulsed mode
 - Prototype of (b) plasma lens (funded study on-going)

WP-prime 12: System design of ILC DR

- The ILC DR will be further improved by incorporating the findings of the latest light source design. Increasing the dynamic aperture is also important in the design of DR.
- ♦By quantitatively evaluating the effect of fringe field to the dynamic aperture of magnets in ILC DR, the method for evaluating fringe field to the dynamic aperture in accelerator design will be established and the design of ILC DR will be optimized.

ILC damping ring optics

Dynamic aperture for ILC DR (hard edge)

Dynamic aperture evaluation with fringe effect (SuperKEKB DR)

WP-prime 14: System design of ILC DR injection/extraction kickers

- A fast kicker system using a semiconductor pulse power supply with nanosecond response was confirmed as proof of principle at KEK's ATF about 10 years ago.
 Semiconductor technology has been evolving, and it is now possible to advance nanosecond response beam injection/excitation systems using the recent semiconductor technology.
- The technical evaluation of the fast kicker power supply using the recent semiconductor technologies.
- The evaluation of fast pulsed power supply technology will contribute not only to the fast kicker system but also to the performance and reliability of nanosecondscale beam control technology and its application to a wide range of accelerator systems.

Beam extraction test at Storker And The DR Extracted beam from DR

Beam injection/extraction system for CLIC damping ring

WP-prime 15: System design of ILC FFS

ATF2 beamline

Maximum search algorithms to be applied to beam tuning (Machine Learning)

WP-prime 16: Final doublet design optimization

Anti-vibration

- Cooling of the superconducting ILC final focus magnets will be performed using 2K superfluid helium to realize superconducting magnets with high oscillation stability.
- Quantitative evaluation of the vibration generated by the 2K cooling system located on the side of the final focus magnets has not been completed.
- We will measure and evaluate the vibration generated by the 2K cooling system by using the prototype.

Vibration measurement system for SuperKEKB final focus magnet (KEK)

Prototype of ILC service cryostat (2K cooling system; BNL)

WP-prime 17: Beam Dump

circulation and heat exchange

window under high radiation dose

Additionally work on (personnel primarily):

- Sustainability and site (link to EAJADE)
- Cryo
- Beamdynamics and EDR documentation (also EAJADE)
- MDI and other WG3 related activities (use EAJADE)
- More .. ?
- ?