arXiv:1912.08403

arXiv:2203.07668

Measuring the tau polarisation at the ILC

Keita Yumino, Daniel Jeans

KEK, SOKENDAI

Today's topic

First result using PFO for impact parameter method

look at

- Method efficiency
- Polarimeter

compared with MC

Motivation

At the ILC, forward-backward asymmetry $A_{FB} = \frac{3}{4} A_e \cdot A_f$ can be measured

Thanks to ILC's polarised beams, A_e can be measured $\Rightarrow A_f$ can be extracted from A_{FB}

By measuring A_{FB} precisely and looking for deviations from SM predictions, it is possible to search for new physics, such as heavy gauge boson Z'

We can also directly measure A_{τ} by using tau polarisation $P(\tau)$

$$\frac{dP(\tau)}{d\cos\theta} = \frac{3}{8}A_{\tau}(1+\cos^2\theta) + \frac{3}{4}\left(\frac{A_e - P_e}{1 - A_e P_e}\right)\cos\theta$$

The aim of this study -

The reconstruction of tau spin orientation ("Polarimeter") in order to measure polarisation to investigate new physics.

Tau jet reconstruction

1:Look for two seed direction to build tau jet candidates

2:Make two cones

first seed

second seed

second seed : the highest momentum charged PFO (separated from the first seed by at least $\pi/2$ in the x-y plane $(\delta\phi)$)

 $\beta = 0.1 \text{ rad}$

(need to tune)

Polarimeter

Reconstruction of tau polarisation $P(\tau)$ depends on tau decay mode.

Polarimeter vectors of $\tau \to \pi \nu$ in τ rest frame

$$h(\tau^{\pm} \to \pi^{\pm} \nu) \propto p_{\pi^{\pm}}$$

Polarimeter vectors of $\tau \to \rho \nu$ in τ rest frame

$$h(\tau^{\pm} \to \pi^{\pm}\pi^{0}\nu) \propto m_{\tau}(E_{\pi^{\pm}} - E_{\pi^{0}})(p_{\pi^{\pm}} - p_{\pi^{0}}) + \frac{1}{2}(p_{\pi^{\pm}} + p_{\pi^{0}})^{2}p_{\nu}$$

"Polarimeter"

The cosine of the angle this polarimeter vector makes to the tau flight direction

Previous study

Extract polarimeter without using neutrino information

"Approximate" polarimeters based only on the momenta of visible tau decay products

"Optimal" polarimeters including the neutrino component

In this talk: reconstruct neutrino momentum \rightarrow optimal polarimeters

Simulation setup

- Signal event sample with $100 \% e_L^- e_R^+$ beam polarisations were generated using WHIZARD ver 2.8.5.
- The decay of the polarised tau was done using TAUOLA.
- MC truth information was used.

currently

only look at

$$\tau \to \pi \nu \text{ (BR } \sim 10\%)$$

$$\tau \to \rho \nu \text{ (BR } \sim 26\%)$$

- Primary interaction occurs along the beam line(x = y = 0),
- Two taus are back-to-back in x-y plane,
- Charged particle travels approximately in a straight line near IP.
- \circ Two tau momenta lie in a plane containing z-axis, at some azimuthal angle ϕ

For a plane with azimuthal angle ϕ , the intersection of trajectories with this plane can be calculated.

then choice of z_{IP} gives direction of tau momenta

 \Rightarrow How can we choose ϕ , z_{IP} ?

Constraints

- 4-momentum conservation
- tau mass $\times 2$
- Decay point on trajectory × 2

For choice of z_{IP} , ϕ

we can calculate tau 4-momenta P_{τ}

the invariant mass of the missing (neutrino) momentum for each tau can be calculated

$$P_{\nu} = P_{\tau} - P_{vis}$$

We choose the values of z and ϕ which result in neutrino masses closest to zero

Solutions

The distance to MC tau is close and the number of solutions is small because of cone size $\beta = 0.1$ rad?

Method efficiency

Method efficiency

Impact parameter method using PFO

Reconstructed $m_{\tau\tau}$

Summary

- First result using PFO for Impact parameter method was investigated
- The efficiency also has a strange distribution at Z-pole as in the case of MC.
- The results of using PFO for the impact parameter show that the efficiency is still not very good.

Future plan

- Quantify the precision with which the tau polarisation can be measured at ILC-250.
- Investigate search for new physics by using the tau polarisation.