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SIMULATION DATA

e Utilizing ILC and 500 GeV Simulation Data
* /->2qevents
e Clustering showers from hit information (Energy,

X, Y, Z) measured in Ecal Barrel section
223.2 mm (A= +38.2 mm) for barrel

223,6 mm (A=~l~38..6 mm) for endcaps

The SiW ECAL in the ILD Detector
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HIT DISTRIBUTION
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* Events: 200, 80% as training data, 20% as evaluation data

* Each parameter is converted to the range of [-1, 1] by diving by 2000
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loss function

RESULT — LOSS FUNCTION

— test loss
- train_loss

* Loss functions of both training and training
data are decreasing
— Learning works correctly.

* | have to evaluate accuracy also.
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The Change of Representation Space

Learning in representation space color-coded by cluster ID

The dimension of the representation space is

one of the hyperparameters,
and is plotted here in two dimensions.

1 epoch 70 epoch

As the study progresses, each cluster is being collected by ID.
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Easily identifiable IDs are separated, but some clusters are mixed



Hit energy distribution

Adding the Data

* Added data for Endcap Rings and Endcap sections as
well as Ecal Barrels and Hcal hits.
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Loss loss function

— test |oss

- train_loss

Results

* Loss function is falling faster and to a greater extent than
with less data

Epoch
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Summary and Future Plan

e Graph Neural Networks are applied to the PFA and shower clustering algorithms in the ILC analysis framework.
 Two hundred events of Hit data measured with Ecal are used as simulation data.

* The training results showed a decrease in the loss function for both the training and evaluation data.

Future:
e Accuracy of the network

* Hyperparameter tuning and performance evaluation by comparison with PandoraPFA
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GRAVNET - NETWORK -

* Input Data : BXV XF;y
B : Number of examples including in a batch

V : Number of hits for each detector
Fin : Number of the features for each hit
* S:Set of coordinates in some learned representation space

* F;r :learned representation of the vertex features




GRAVNET

Input example of initial dimension V XF;y is converted into a graph.

the f] features of the v; vertices connected to a given vertex or aggregator v; are converted

into the fk quantities, through a potential
(function of euclidean distance djy, ).

The potential function V(dj; ) is introduced to enhance
the contribution of close- by vertices.

Example: V( ]k) = exp(— ]k) \
The ]‘;-,;l functions computed from all the edges associated n @ ff
to a vertex of aggregator v, are combined, generating a new

i
feature f;, of vy.
Example : the average of the f]k across the j edges / their maximum

fie=fxV(di)
d1\



GRAVNET

* For each choice of gathering function, a new set of features ﬁ,l € F,p is generated.
* The F/y vector is concatenated to the initial vector.
* Activation function : tanh

* The F,yr output carries collective information from
each vertex and its surrounding.
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Object Condensation

Get the output from GravNet as [ and output whether the hit seems to be a representative point of the
particle (0< 5 < 1)

Employs two terms as Loss terms to improve cluster and background identification
L= Ly+Lg

Ly : The closer the hit is to a particle with high f and belonging to the same particle, the smaller it is,
and the more it belongs to a different particle, the larger it is.
— Equivalent to the attractive and repulsive forces acting on an electric charge

Lg : Converge (3 to 1 for only one of each particle corresponding to a true cluster
The remaining 8 works its way closer to O
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LOSS FUNCTION - NETWORK LEARNING -

The value of 3; (0 < B; < 1) is used to define a charge q; per vertex i
q; = arctanh®f; + qmin (B; 2 1: q; > +)

The charge q; of each vertex belonging to an object k
defines a potential V;, (x) « g;

The force affecting vertex j can be described by

T 1 (vertex i belonging to object k) N
. 0 (otherwise) qj - VVi(xj) =q;V ZMikVik(xj, qi)

i=l1
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LOSS FUNCTION

* The potential of object k can be approximated :

Vi(x) = Vo (x, gok), With gor = max qiMij.

* An attractive and repulsive potential are defined as :

Vi(®) = [Ix — Xo|1°qak, and

Vie(x) = max(0, 1 — ||x — x¢ ) qa-

* The total potential loss Ly :

N K
%Z PCACIENEE A
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LOSS FUNCTION

The Ly has the minimum value for q; = quin + € Vi

To enforce one condensation point per object, and none for background or noise vertices,

the following additional loss term Lg is introduced : sp ¢ hyperparameter describing the

background suppression strength
N : &
1 1 K : Maximum value of objects
Lg=— 1 — Ba = iBis
P~k Xk:( Pak) + 58 Np Xl:" P Ng : Number of background

n; : Noise tag (if noise, it equals 1.)

The loss terms are also weighted by arctanh? B; :

1

N
. p;: Featutes
N ZLl(tlspl) EiaWIth l

L;(t;,p;) : Loss term (Difference between true
labels and outputs of network)

i=1Si =]

& =(1—n;) arctanh? Bi.
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