

WG2 SRF: WP3 Crab Cavities Design Review Workshop #3 – 21/10/22

Peter McIntosh

UKRI-STFC Daresbury Laboratory

1st November 2022

Agenda for WP3 Design Review #3 (GMT)

Friday 21 st October 2022					
13:30	Introduction and Remit for the Workshop	Peter McIntosh (STFC)	5 min		
13:35	Specification Review	Peter McIntosh (STFC)	15 min		
Cavity Design Updates					
13:50	Elliptical/Racetrack	Graeme Burt (Lancaster University)	15 + 5 min		
14:10	RF Dipole (RFD)	Suba De Silva/Jean Delayen (ODU/JLab)	15 + 5 min		
14:30	Double Quarter Wave (DQW)	Silvia Verdu Andres (CERN)	15 + 5 min		
14:50	Wide Open Waveguide (WOW)	Binping Xiao (BNL)	15 + 5 min		
15:10	Quasi-waveguide Multicell Resonator (QMiR)	Andrei Lunin (FNAL)	15 + 5 min		
15:30	Next Stage CC Preparations	Peter McIntosh (STFC)/K Yamamoto (KEK)/A Yamamoto (KEK)	30 min		
16:00	Meeting close				

Scope Design Review #3

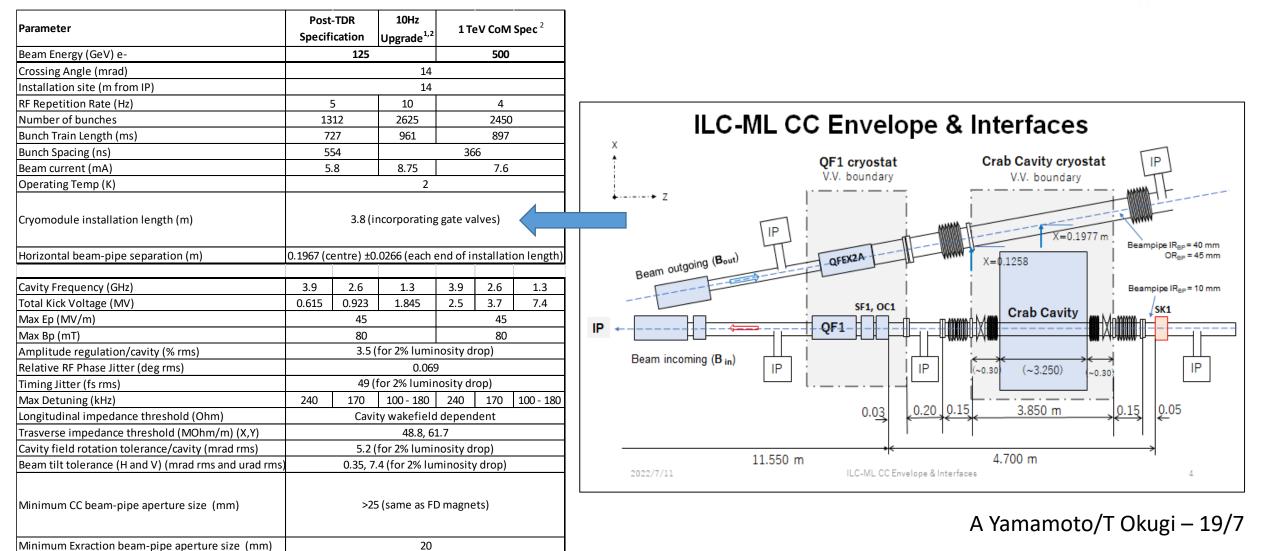
- Assess and compare CC EM designs, not likely finally optimised:
 - Cavity,
 - HOMs,
 - Couplers,
 - Multipacting,
 - Tuning.
- Clarifying next steps to 'head towards' a down-selection process:
 - All EM design aspects complete, including pressure stability and fabrication assessment.
 - Down-select 2 optimum CC designs for future prototype development (external review).
- Final CC down-selection, post-prototype validation at ~18-months later.

As proposed at Design Review #1 – Dec 21

Specifications Update (v14)

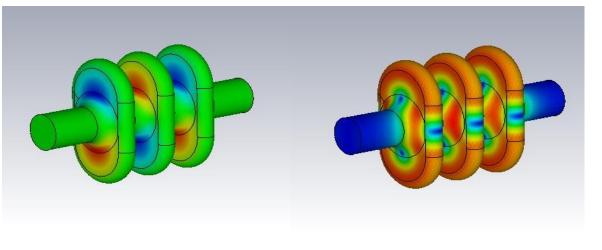
0.97, 66, 300

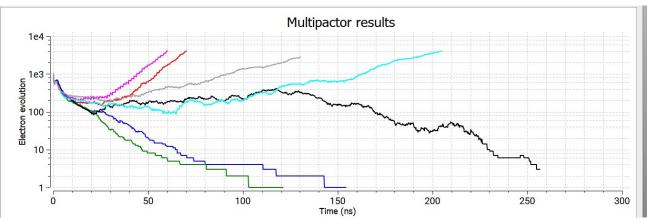
23200, 15400


assume CW-mode operation

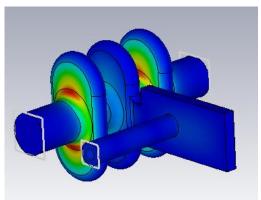
Beam size at CC location (X, Y,Z) (mm,um,um)

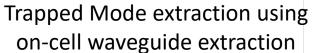
Beta function at CC location (X, Y) (m,m)

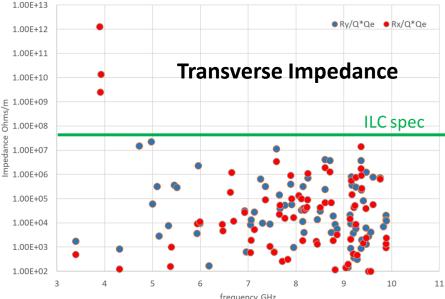

CC System operation



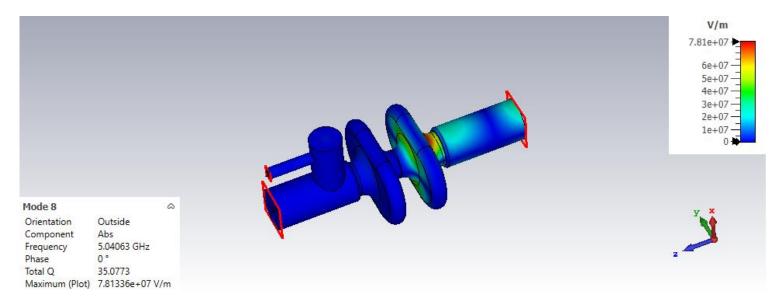
Further clarify longitudinal impedance specification – Both Short/Long-range


Elliptical/Racetrack 3.9 GHz G Burt (Lancaster U)

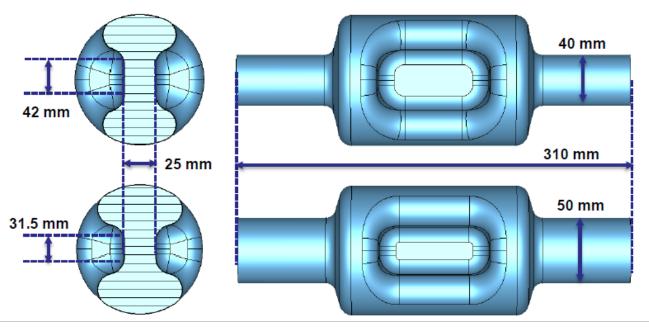



• Multipactor limit identified @ 7.15 MV/m (narrowband) on minor axis iris.

- 25 mm central beam-pipe, with 30 mm for end-cells to aid HOM damping.
- Expect to achieve 9.7 MV/m at 80 mT with R_t/Q=132 Ohms.
- 250 GeV ILC requires 1 x 3-cell cavity @ 5 MV/m to achieve 0.615 MV.
- 1 TeV ILC requires 4 x 3 cells @ 5.5 MV/m to achieve 2.5 MV.



Elliptical/Racetrack 3.9 GHz G Burt (Lancaster U)

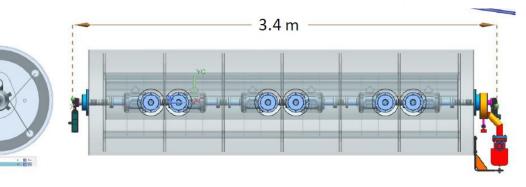


- A 2-cell cavity has no trapped modes on-cell damping is therefore not required simpler to manufacture:
 - Expect an increase in both LOM and SOM Qe.
- Would change the ILC application expectations:
 - 250 GeV 2 x 2-cell cavities @ 4.2 MV/m
 - 1 TeV 5 x 2-cell cavities @ 6.5 MV/m

RF Dipole 1.3 GHz S De Silva/J Delayen (Jlab/ODU)

- Pole separation 25 mm
- Beam aperture increased 40 mm \rightarrow 50 mm
 - Large beam aperture allows better HOM extraction
- Optimized the pole shape (pole height and length):
 - To maintain maximum achievable $V_{\rm t}$ at 1.35 MV
 - While maintaining peak surface field requirements of E_p < 45 MV/m and B_p < 80 mT

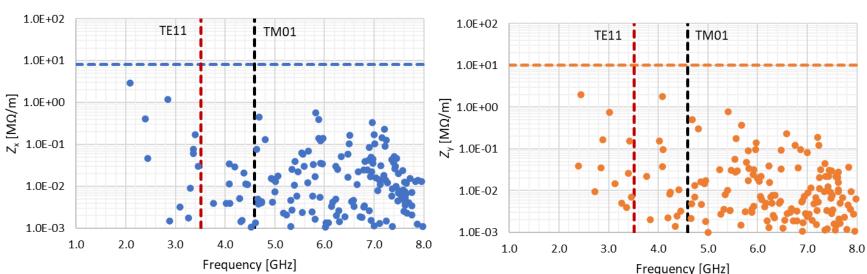
Machined from Nb ingots, 2.5 mm thick walls - ~ 40 kg Nb material


Property	1-cell	1-cell-new	
Operating frequency [GHz]	1.3	1.3	
1 st HOM [GHz]	2.142	2.089	
E _p /E _t *	3.83	3.76	
B_p/E_t^* [mT/(MV/m)]	6.84	6.80	
Bp/Ep [mT/(MV/m)]	1.79	1.80	
G [Ω]	129.9	129.54	
<i>R</i> / <i>Q</i> [Ω] (V ² /P)	444.8	440.4	
$R_{\rm t}R_{\rm s} \left[\Omega^2\right] \left({\rm V}^2/{\rm P}\right)$	5.78×10 ⁴	5.70×10 ⁴	
*Reference length V/E _t = $\lambda/2$ [mm]	115.3	115.3	
V _t [MV]	1.35	1.35	
E _p [MV/m]	44.8	44.2	
<i>B</i> _p [mT]	80.1	79.6	
Pole separation [mm]	25	5	
Beam aperture [mm]	40	50	
Cavity Length [mm] (flange-to-flange)	310	310	
Cavity Diameter [mm]	100.3	99.4	
Pole Length [mm]	80	85	
Pole Height [mm]	42	31.5	
Angle [deg]	22.5	22.5	

RF Dipole 1.3 GHz S De Silva/J Delayen (Jlab/ODU)

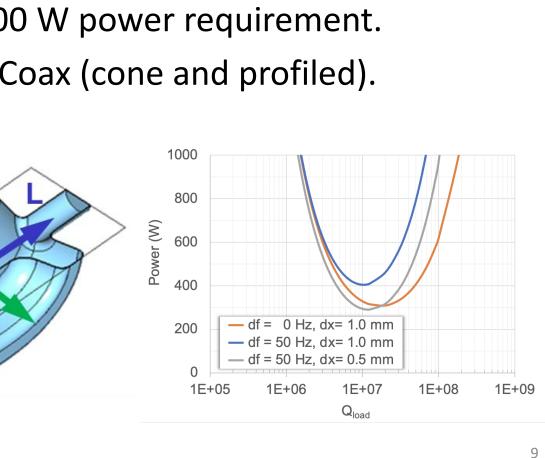
--ilc

Impedance threshold/cavity:

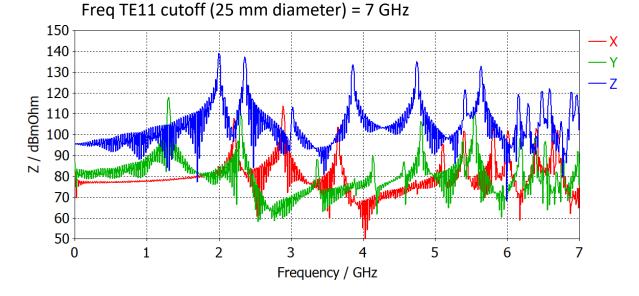

- Zx= 8.13 MΩ/m & Zy= 10.28 MΩ/m (6 cav).
- Well damped HOMs (with margin).

For 1 TeV – cryomodule to fit within 3.8 m:

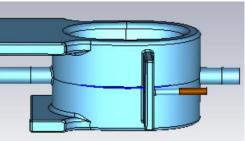
- 6 cavities for single CM.
- Incl 2nd exhaust 20 mm beam pipe.


Total achievable – 8.1 MV (1.24 MV Vt per cavity). • ~10% extra margin Design concept follows JLab C100 cryomodule.

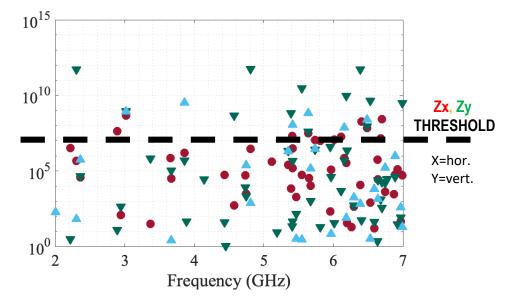
Double Quarter Wave 1.3 GHz S Andres Verdu (BNL)


- 25 mm pole-separation, with 40 mm beam-pipe.
- Both Tesla-type and waveguide HOM couplers being explored.
- Qe = 1e7, with 130 Hz bandwidth and 300 W power requirement.
- Various FPC options under study: Hook, Coax (cone and profiled).

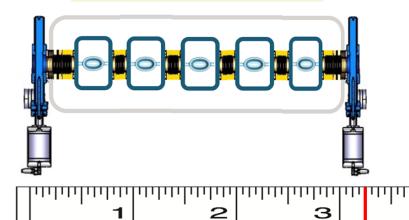
ILC CC Specs v11	125 GeV, 10 Hz upgrade	500 GeV	
Frequency $\omega_0/2\pi$ (GHz)	1.3	1.3	
Total V_{\perp} (MV)	1.86	7.4	
I _{b0} (mA)	8.75	7.6	V
No. DQW cavities	2	5	
V_{\perp} per cavity (MV)	0.93	1.48	
DQW R/Q_{\perp} (Ω , circuit)	211	211	
Max. offset y (mm)	0.5	0.5	
Detuning $\Delta \omega/2\pi$ (Hz)	50	50	



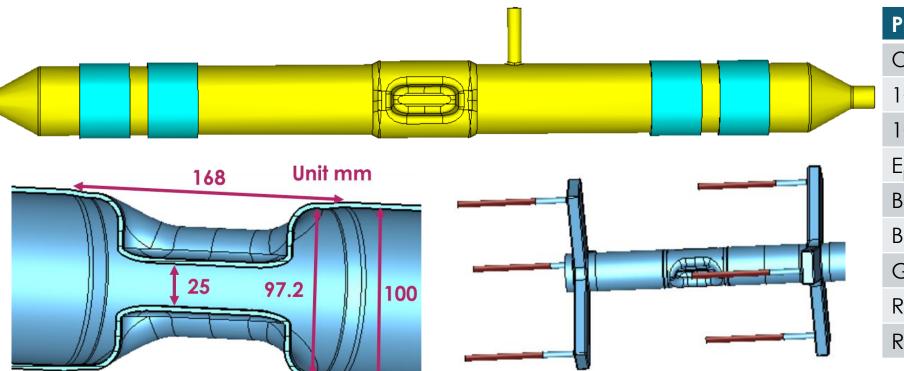
Double Quarter Wave 1.3 GHz S Andres Verdu (BNL)

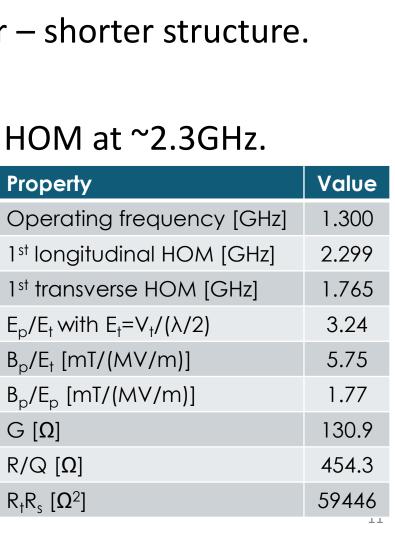

• ~3 orders magnitude HOM damping required.

Combination of both hook and waveguide
 HOM dampers anticipated.



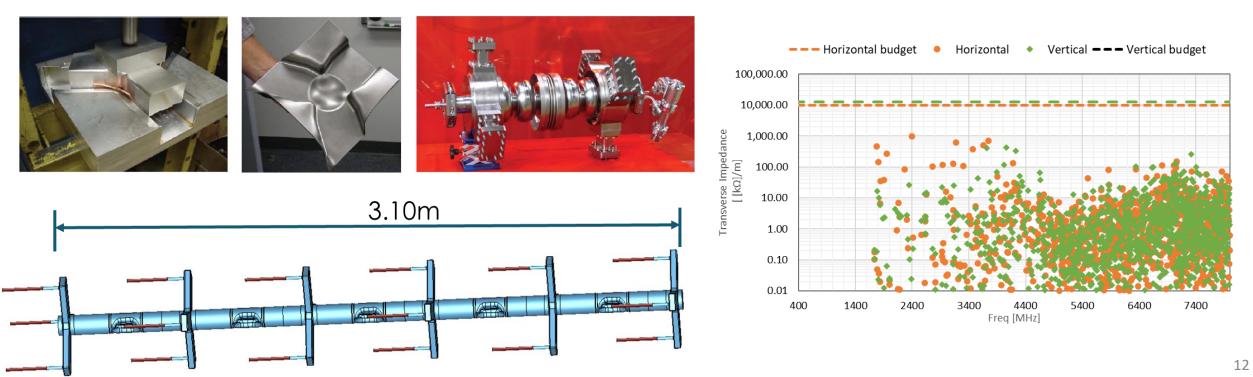
• Promising results using single Tesla-type coupler.


• CM easily fits within 3.8 m envelope.

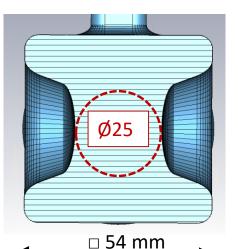

Side view, 5 DQW in cryomodule

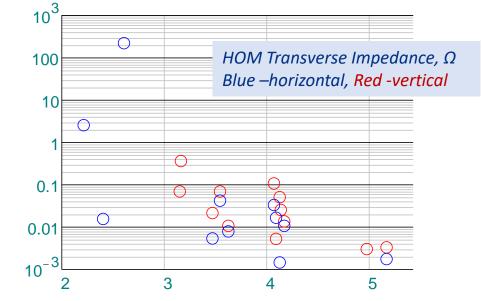
Wide Open Waveguide 1.3 GHz B Xiao (BNL)

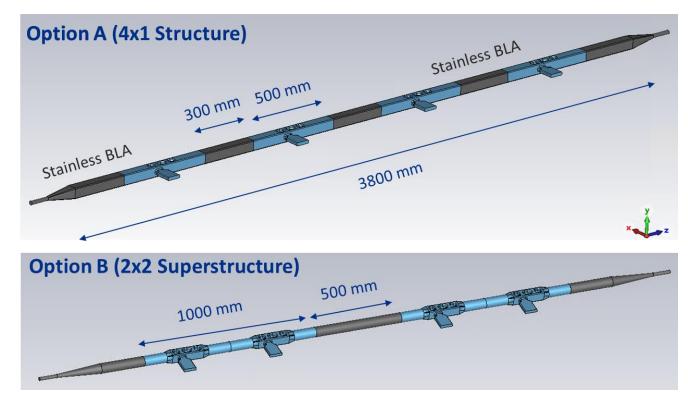
- 25 mm pole-separation, with 100 mm beam-pipe.
- HOM waveguides preferred to Beam Line Absorber shorter structure.
- SOM can also attenuate in waveguides.
- First transverse HOM at ~1.8GHz, first longitudinal HOM at ~2.3GHz.

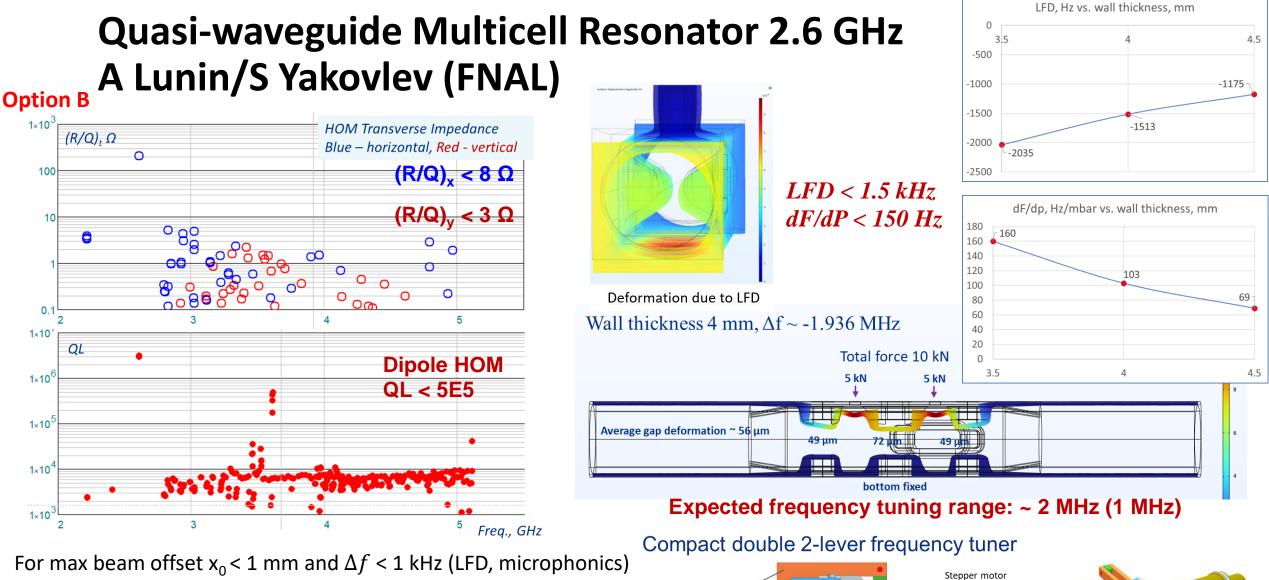


Wide Open Waveguide 1.3 GHz B Xiao (BNL)


- 1.845 MV for 125 GeV case and 7.4 MV for 500 GeV required.
- 2 cavities for 125GeV (1.48MV/cavity) or 5 cavities for 500 GeV.
- Considering to electrically short 1 WG to reduce the number of coax on each circular pipe from 3 to 2 (re: Jlab ERL-FEL scheme).
- FPC Qe = 3×10^6 , requires 850 W RF power.


Quasi-waveguide Multicell Resonator 2.6 GHz A Lunin/S Yakovlev (FNAL)


ILC Crab Cavity Aperture Limit: Ø25 mm


Freq	2600 MHz
V _{kick}	0.92 MV
(R/Q) _t	225 Ω
G-factor	130
W _{STORED}	0.24 J
Length	< 500 mm

- SOM strongly coupled with WG-port, Qext < 5x10³
- HOM spectrum is sparse and loaded to a beam pipe
- 4 QMiR cavities can provide Vt ~ 4 MV for 1 TeV option

- Two options are considered, a chain of 1x4 and 2x2 cavities
- Simple stainless-steel inserts to damp HOMs
- Ceramic BLA can be a backup if needed.

Levers

- Beam OFF: $P_{min} \approx 940$ W, Optimal Coupling: $Q_L \approx 1 \times 10^6$
- Beam ON & Microphonics: P_{max} ≈ 1500 W
 Required RF power from the generator (overhead 100%):
 P_{gen} < 3 kW (FPC design is ongoing)

Crab Cavity Parameters

Parameter	Elliptical/Racetrack	RFD	DQW	wow	QMIR	Units	Nomenclature
Operating frequency	3.9	1.3	1.3	1.3	2.6	GHz	
SOM						GHz	
1 st Longitudinal HOM						GHz	
1 st Transverse HOM						GHz	
<i>E</i> _p / <i>E</i> _t *							E _t - clarify eqtn (JD)
$B_{\rm p}/E_{\rm t}^{*}$						mT/(MV/m)	
B _p /E _p						mT/(MV/m)	
G						Ω	
R/Q						Ω	
R _t R _s						Ω^2	Assumptions for Rs
$V_{\rm t}$ per cavity						MV	
E _p						MV/m	
B _p						mT	
Total V _t						MV	
Total No. of cavities							
Active Cavity Length						mm	
Flange-flange Cavity Length							
Number of cells							
Cavity Diameter						mm	
Minimum Aperture						mm	
FPC Q _L							List assumptions used
Bandwidth						kHz	
Cavity Input Power						kW	
Horizontal Kick Factor k _x						V/pC	
Vertical Kick Factor k _y						V/pC/m	
Stored Energy W						J	Assume E _t 1 MV/m
HOM impedance (Longitudinal)						MΩ	
HOM impedance (Transverse)						MΩ/m	
First 3 multipole pararameters							

Design teams to converge on consistent parameters

Next Stage WP3 CC Preparations

---ilc

For a future down-selection process:

- Agree the criteria to develop for each of the CC designs:
 - Cavity
 - Couplers (input and HOM)
 - Pressure stability and tuning
 - Multipacting
 - Fabrication (Sheet/Ingot/Mixed, Nb material required, readiness detail)
 - Anything else (level of design detail expected (bare/dressed)
- WP3 meeting proposed to review and agree criteria in Nov/Dec.
- What's left to complete for each of the design options currently?
- What are the expected timescales to complete try and agree/set today?
- What alignment is needed with ILC IDT processes timescales likely? (Spring 2023?)
- Context for a proposed down-selection review:
 - Terms of reference to be developed/agreed.
 - Specialist membership who defines/invites?
 - IDT output anticipated and when?

(From WP3 Design Review #3 discussions)

MANY THANKS

Questions?

Science and Technology Facilities Counci