

Andreas Löschcke Centeno (<u>a.loeschcke-centeno@sussex.ac.uk</u>) Jochen Dingfelder, Peter Lewis, Christian Wessel

First Conceptual Design and Studies for a Tracking TPC for the Belle II Experiment

LCTPC Workpackage Meeting, October 13th 2022

- Asymmetric e⁺e⁻ collider
 - electrons: 7 GeV
 - positrons: 4 GeV
- B-Factory by creating $\Upsilon(4S)$
- Design luminosity (at time of thesis) $\mathscr{L} = 6.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Top-up injection scheme

Andreas Löschcke Centeno

Upgrade Proposal

Central Drift Chamber (CDC)

Upgrade Proposal

Central Drift Chamber (CDC)

- tracker: measures (transverse) momentum
- PID (dE/dx measurement)
- source of trigger

Basic Concept

- CDC @ full design lumi:
 - Large cross-talk effects
 - High occupancy due to unexpectedly large bkg

Basic Concept

- CDC @ full design lumi:
 - Large cross-talk effects
 - High occupancy due to unexpectedly large bkg
- Proposal to replace the drift chamber with a tracking TPC
- Project to upgrade silicon detectors
 ("VTX") already underway

This project: produce a proof-of-concept conceptual design of a tracking TPC using simulation in the Belle II software and analysis framework

Geometry

- TPC dimensions (compared to single LCTPC drift volume):
 - Length: 2.3 (2.35) m
 - Inner radius: 0.45 (0.33) m
 - Outer radius: 1.14 (1.8) m
- Single drift volume due to PID in forward direction

Use LCTPC as a starting point for Belle II TPC choices:

- T2K gas mixture (95% Ar, 3% CF4, 2% Isobutane)
- Drift field of 289 V/cm

Implementation into basf2 (Geant4)

- Simplified geometry:
 - Cylindrical volume filled with T2K gas mixture
 - No additional materials (support structure, cables, ...)
- Modelled drift and diffusion (instead of simulated)
 - Drift properties well known
 - Apply Gaussian smearing to coordinates of ionization
- Digitization:
 - Completely pixelated plane over entire area of endplate
 - Binary readout
 - assumes mapping of 1 e⁻ to 1 pixel
 - no charge sharing between pixels

GridPix:

- 55µm pitch
- amplification structure aligned with pixels

Simulating First Tracks: 10 Muons (p = 1-4 GeV)

Andreas Löschcke Centeno

- High luminosity challenging environment for TPC:
 Event overlap due to large drift times (30 µs) expected
- Useful to visualize event overlap

- High luminosity challenging environment for TPC:
 Event overlap due to large drift times (30 µs) expected
- Useful to visualize event overlap
 - Assume trigger for Υ (4S) at t_o

- High luminosity challenging environment for TPC:
 Event overlap due to large drift times (30 µs) expected
- Useful to visualize event overlap
 - Assume trigger for Υ (4S) at t_o
 - Hits from event before t_o might still be drifting in volume

- High luminosity challenging environment for TPC:
 Event overlap due to large drift times (30 µs) expected
- Useful to visualize event overlap
 - Assume trigger for Υ (4S) at t_o
 - Hits from event before t_o might still be drifting in volume
 - Hits from event after t_0 might appear while Υ (4S) is still drifting

- High luminosity challenging environment for TPC:
 Event overlap due to large drift times (30 µs) expected
- Useful to visualize event overlap
 - Assume trigger for Υ (4S) at t_o
 - Hits from event before t_o might still be drifting in volume
 - Hits from event after t_0 might appear while $\Upsilon(4S)$ is still drifting

Overlaid Events (No Beam Background)

Overlaid Events (No Beam Background)

Belle II Event Rates (Luminosity: 6.5e35 cm⁻²s⁻¹)

Process	σ / nb	Rate / (60µs) ⁻¹	No. of tracks (estimate)
Υ(4S)	1.11	0.04	11
uubar	1.61	0.06	8
ddbar	0.4	0.03	8
ssbar	0.38	0.02	8
ccbar	1.3	0.05	10
Bhabha	300	11.7	2
YY	4.99	0.20	4
тт	0.919	0.04	2
eeee	39.7	1.55	4
ееµµ	18.9	0.74	4
μμ	1.148	0.04	2

Avg. No. of track per 60 μs: **35.82**

(not including acceptance of TPC)

Andreas Löschcke Centeno

x (arb. units)

Beam Backgrounds (BG19 campaign)

- Touschek Scattering: Scattering of two beam particles within one bunch
- Coulomb/Beam-gas Scattering
 Elastic Coulomb scattering of beam particles
 with residual beam gas
- Bremsstrahlung Inelastic scattering of beam particles with gas nuclei

Process	Rate / MHz	Rate / (60µs) ⁻¹
Brems HER	2.46479	147.89
Brems LER	8.2928	497.57
Coulomb HER	16.335	980.10
Coulomb LER	191.641	11498.46
Touschek HER	0.242353	14.54
Touschek LER	119.409	7164.54

Beam Backgrounds (BG19 campaign)

- Touschek Scattering: Scattering of two beam particles within one bunch
- Coulomb/Beam-gas Scattering
 Elastic Coulomb scattering of beam particles
 with residual beam gas
- Bremsstrahlung Inelastic scattering of beam particles with gas nuclei
- Injection Backgrounds not included!
 Betatron-oscillating injection particles lost in interaction region due to strong magnetic fields of focussing magnets

Process	Rate / MHz	Rate / (60µs) ⁻¹
Brems HER	2.46479	147.89
Brems LER	8.2928	497.57
Coulomb HER	16.335	980.10
Coulomb LER	191.641	11498.46
Touschek HER	0.242353	14.54
Touschek LER	119.409	7164.54

Including Beam Background

All events

Including Beam Background

- Beam background mainly produces micro-curlers
- Easy to identify:
 - Horizontal in z
 - Isolated clump in *x-y*

Andreas Löschcke Centeno

Including Beam Background

- Beam background mainly produces micro-curlers
- Easy to identify:
 - Horizontal in z
 - Isolated clump in *x*-*y*
- Use pattern recognition algorithm for identification and rejection

Background Rejection by Christian Wessel

- Volume is separated into 2x2x2 cm³ cells
 - inspired by size of readout chip: rejection at hardware level
- Reject cells with hits which are either
 - completely isolated
 - connected in *z*-direction in one spot in *x*-*y*

Background Rejection by Christian Wessel

26

Background Rejection by Christian Wessel

Tracking TPC for Belle II

pT Resolution Studies

- Measure σ_{pT}/pT as function of
 - electron efficiency
 - spatial point resolution σ
 (disguised as pixel pitch d)

- no diffusion
- no digitization (discretization of coordinates from pixels)
 - realized by very small pixel pitch
- 100 % electron efficiency

 $40^{\circ} < \theta < 140^{\circ}$

Material: only TPC

1000 muons per pT

0

Andreas Löschcke Centeno

LCTPC Workpackage Meeting

13.10.2022

Tracking TPC for Belle II

Comparing with CDC

- Material: only TPC/CDC
- 1000 muons per pT

 40° < θ < 140°
- Constant MS term lower for CDC

 2 mm aluminium for TPC
 0.1 mm aluminium + 0.46 mm carbon-fibre-reinforced polymers for CDC
- TPC performs better in linear rise (position measurement) despite diffusion and shorter lever arm

Tracking TPC for Belle II

Including the VTX

Tracking TPC for Belle II

- Material: only TPC/CDC
- 1000 muons per pT
 40° < θ < 140°
- VTX greatly improves position measurement term in resolution (linear rise) for TPC
- Mainly contribution to lever arm

 No notable difference between CDC+VXD and CDC+VTX

- Tracking with a TPC seems viable
 - Event overlap is manageable
 - Beam background micro-curlers can effectively be removed
 - Could use some improvement
 - Track finding is next step
- First requirements on readout:
 - 200 μm pitch is sufficient
 - Question of gating still open

- Trigger replacement (STOPGAP)
- Consider contributions from Injection Background

- Tracking with a TPC seems viable
 - Event overlap is manageable
 - Beam background micro-curlers can effectively be removed
 - Could use some improvement
 - Track finding is next step
- First requirements on readout:
 - \circ 200 μ m pitch is sufficient
 - Question of gating still open

- Trigger replacement (STOPGAP)
- Consider contributions from Injection Background

- Tracking with a TPC seems viable
 - Event overlap is manageable
 - Beam background micro-curlers can effectively be removed
 - Could use some improvement
 - Track finding is next step
- First requirements on readout:
 - 200 μm pitch is sufficient
 - Question of gating still open

1 year later		
still interest from various groups, but		
no further progress.		
If you're interested please contact		
Peter Lewis (<u>lewis@physik.uni-bonn.de</u>)		

- Trigger replacement (STOPGAP)
- Consider contributions from Injection Background

Resources

- Masters Thesis: First Conceptual Design and Studies for a Tracking Time Projection
 Chamber for the Belle II Experiment
- Snowmass 2021 white-paper: <u>A TPC-based tracking system for a future Belle II upgrade</u>
- Snowmass IF5 Meeting Presentation: <u>A tracking TPC for a future Belle II upgrade</u>

⁷ Tracking TPC for Belle II

Thank you for your attention!

Backup Slides

Time Projection Chamber (TPC)

- Full 3D tracker
- generally good dE/dx resolution due to large number of sampling points
- Low material budget
- Better background tolerance
- A lot of R&D already present
 - Use LCTPC for ILD as starting point
- Cannot provide trigger due to long drift times
- Large amount of event overlap in drift volume

Magboltz Simulation

SimHits and Digits

Andreas Löschcke Centeno

Andreas Löschcke Centeno

Transverse Diffusion: 1000 Muons (*p* = 1-4 GeV)

transverse diffusion coefficient for T2K gas mixture: 84 µm/sqrt(cm) at 296 V/cm (simulated with Magboltz by Jochen Kaminski)

dE/dx Distribution

Beam Background Conditions (BG19 campaign)

- 1. Beam current: LER 3.6A, HER 2.6A.
- 2. Number of bunches: 2500
- 3. Luminosity 8e35 /cm2/s.
- Beam pipe gas pressure: <P> = 1nTorr using values from June 27, 2020.
- The realist collimator profile and tip-scattering physics for particles scattered off by collimators.
- 6. For HER, the collimator mask was re-optimized to suppress the background.

Process	Rate / MHz	Rate / (60µs)⁻¹
Brems HER	2.46479	147.89
Brems LER	8.2928	497.57
Coulomb HER	16.335	980.10
Coulomb LER	191.641	11498.46
Touschek HER	0.242353	14.54
Touschek LER	119.409	7164.54

Micro-Curler

Sum of Tracks

Overlaying Background (x1 Background)

Ion Density (x5 Background)

• Using simple assumption for amplification region (gain, backflow) and ion mobility: calculate charge density in TPC volume

=> 4633.63 ions / cm³

or around 0.74 fC / cm³

- Comparable to other TPC examples
- Solid micro-curler rejection needed
 - First tracking studies done by Christian Wessel

Fig. 1. A typical drift spectrum for Ar-CF₄-iC₄H₁₀ (95-3-2) obtained at a pressure of 8 Torr, E/N of 20 Td, and a V_{GEM} of 25 V and at room temperature.

https://doi.org/10.1016/j.nima.2018.11.049

Time-of-Flight Extension for the TOP PID System

- TOP not hermetic
- Supplemental TOP Gap Instrumentation with time-of-flight sensors

- 50-70 ps time resolution for MIPs
- Novel fast MAPS suitable
- Can provide missing dE/dx
 - excellent π/K separation Ο

2

number of tracks

Double timing layer can provide trigger ECL inner wall fake (background) trigger rate in Hz 10^4 10^5 10^{-5} 10^{-5} r=250mm, 2 layers r=250mm, 3 layers r=450mm, 2 layers ~30mm r=450mm, 3 layers current 2D track trigger ~95mm CDC outer wall

10

- ideal:
 - 100 % eff
 - \circ No digitization
 - No diffusion

- idealDiff:
 - 100 % eff
 - No digitization
 - With diffusion

- Material: only TPC
- 1000 muons per pT

 40° < θ < 140°

Andreas Löschcke Centeno