Positron source for SuperKEKB

and self-introduction

2022/10/24 Yoshinari ENOMOTO

Research career

period	Affiliation	site	field	Thema
2005-2011	U. Tokyo	CERN (AD)	Atomic physics Plasma physics	Synthesis of cold antihydrogen in a cryogenic charged particle trap
2011-2015	Riken	Riken	Atomic physics Molecular physics	Cryogenic electrostatic ion storage ring
2015-	KEK	KEK (Tsukuba)	Accelerator	Positron source Magnet power supply

Physic analysis << hardware design and manufacturing

	Project	Y. E.
~2010	KEKB	
2011	SuperKEKB construction started	
2011/3	Large earthquake	
2015/4		Joined SuperKEKB project
2016	Phase 1 started (< 1 nC)	
2018	Phase 2 started	
2018/6		ALCW@Fukuoka
2019	Phase 3 started	
2019/10		LCWS@Sendai
2020	Major upgrade of positron source (~3.5 nC)	
2021/3		LCWS online
2022/9		Joined ILC project

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

FC head + BC + target = FC assembly

Ratio B @ target / B @ entrance of the LAS is important stronger field is preferred in the following solenoid section much stronger field is required @ target

Injection requirement

Life in ring	360 s		
Current	3.6 A		
Injection bunch charge	4 nC		
Injection rate	25 Hz x 2 bunch		
Injection efficiency	50 %		
Circulation frequency	10 ⁵		

$$\frac{dI}{dt} = \frac{3.6 \,[\text{A}]}{360 \,[\text{s}]} = 10 \,[\text{mA/s}]$$

4 [nC] × 25 [Hz] × 2 [bunch] × 50[%] × 10^{5} [Hz] = 10 [mA/s]

Short storage time and high storage current in the ring \rightarrow high intensity positron injection is desired

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

After large discharge...

Slit gap got narrow. Not possible to apply high voltage unless the gap will be expanded.

Cu alloys

Yield Strength, MPa

Positions of various copper alloy systems in conductivity-strength map

Yield strength

Yield strength (Mpa)

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

Additional inductance

 $\text{FC}{\rightarrow}$

From power supply

Capacitance box

3

0

Difference between additional L position

Voltage and current

FC voltage	FC current	I/V (FC)
1148	2245	1.96
1992	2800	1.41
1064	2631	2.47
1757	2809	1.60
2561	2792	1.09

time (x10⁻⁶sec)

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

Orbit deflection in solenoid section

Asymmetry of magnetic connection

BPM and steering coils inside solenoid

History of improvement

position	design	2020ab-run	2020ab- study	2020c	2021a	2021b	2021c	2022ab
15_T	10	8.2	8.3	8.1	8	9	10.3	10.3
16_5	5.8	1.9	3.2	4.1	4.4	5.3	6.1	6
28_4	5	1.6	2.4	2.5	3.2	3.5	3.7	4.25
DC_4	4	1.3	1.9	2.1	2.5	3	3.2	3.5
58_4	4	1.3	1.9	2.1	2.5	3	3.2	3.5

Major upgrade

15_T : primary beam just before target
16_5 : first BPM for positron
28_4 : just before dumping ring
DC_4 : just after dumping ring
58_4 : end of LINAC

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

Present layout

New layout

Detail design finished Ready for manufacturing

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

Rotating target for SuperKEKB positron source

Small hole limit tuning flexibility for electron beam Switch free space and W target within 20 ms (50 Hz)

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

Cited from US-Japan proposal "An Integrated Simulation Tool for Dark Current Radiation Effects and Positron Sources in Particle Accelerators"

Cited from US-Japan proposal "An Integrated Simulation Tool for Dark Current Radiation Effects and Positron Sources in Particle Accelerators"

Positron source as a benchmark for the simulation software

- Positron source is a microcosm of the accelerator
 - Highly multi-physical simulation is desired from radiation protection to particle tracking.
- Experimental test is hard
 - Need high power accelerator and heavy radiation shield.
 - Only a few sources are in operation in the world.
 - KEK has long operation experiences, test facility and the real positron source in operation.
- Input to the future project is important task
 - High intensity Positron source is one of the key device for future lepton colliders such as ILC, CLIC and FCC.
 - Careful and extensive simulation are crucial and ongoing.
 - Validation of the simulation method (i.e. comparison with experimental data) is important.

Object	Simulation software used till now			
Solenoid field	CST (static B)			
Pulsed magnet (FC)	CST (time dependent B) Ansys EM (electromagnetic and mechanical)			
Target	Fluka, Eggs (radiation) Ansys (thermal, mechanical)			
Radiation protection	Phits, Fluka			
Acc. Structure	CST (RF), Superfish			
Particle tracking (short range)	GPT, Geant4			
Particle tracking (long range)	SAD, Elegant			
Modeling	Inventor \rightarrow STEP			
Power supply and circuit	Ltspice, microcap			
It is always troublesome to manage simulation conditions and parameters!!				

Comprehensive simulation software package has been desired for a long time. We have many simulation results, experimental data, detailed CAD model and real machine.

Simulation flow of positron source

Transient Magnetic field simulation for FC

Simulation using realistic model and measured current shape was established

Pulse width dependence

Particle tracking from targe to 1st acc structure

Emittance evalution

Thermal simulation of FC and target

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

Magnetic field measurement

- XYZ stage with motor drive
- Rotary stage with motor drive
- XYZ positions are monitored by linear gauge by 10um precision

Pick up coil is mounted on FRP rod.

Looking from downstream side with the measurement system attached

Typical waveform from pick up coil

Comparison between simulation and measurement

Topics

- From 1 nC to 3.5 nC
 - Solve discharge problem of FC
 - Change material of FC head
 - External circuit to reduce voltage
 - Improve beam handling
 - Install steering coils inside the solenoid
- Toward 4 nC and above
 - Shorten distance between FC and 1st acc. Structure
- Another topics
 - Rotating target
 - Full model simulation
 - Magnetic field measurement at test bench
 - Evaluation of W and W-Cu connection

Evaluation of W and W-Cu connection

Thermal and mechanical evaluation of W and W-Cu connection is important. Similar tasks are important for plasm facing wall of Fusion facility. Preparing collaboration with NIFS(National Institute for Fusion Science).

40 kV, 300 kW electron beam heating machine @ NIFS

From SuperKEKB to ILC

There are many common and similar tasks.

- Experience in SuperKEKB will useful for designing positron source for ILC.
- Collaboration with many other project like SuperKEKB, FCC, CLIC, CEPC etc. is important.
- Collaboration with non-accelerating institute is also important.

Target and plan for ILC positron source

- Prepare for manufacturing prototype when pre-lab launched
 - EDR + Drawings + mockup
 - Test and develop critical components
 - Simulation
 - 3D model

