RF DIPOLE DESIGN UPDATE

Suba De Silva Jean Delayen, Bob Rimmer, Jim Henry

Center for Accelerator Science

Old Dominion University

and

Thomas Jefferson National Accelerator Facility

Outline

- Updated 1.3 GHz RFD crab cavity design for ILC
- Higher order modes and impedances
 - Transverse impedances
 - Loss factor for longitudinal modes
- Summary from Design Review #2
- Conceptual cryomodule layout
- Cavity fabrication sequence
- Summary

Main Goals of the Study

- Transverse voltage: 1.845 MV for 250 GeV and 7.4 MV for 1 TeV
- Cryostat length flange to flange < 3.80 m
 - Focus on 1-cell RFD cavity with the increase in beam line space
- Peak surface fields: $E_p < 45$ MV/m and $B_p < 80$ mT
- Total transverse impedance threshold:
 - Horizontal: 48.8 M Ω /m
 - Vertical: 61.7 M Ω /m
 - Focus on achieving a well damped HOMs (up to 8 GHz)

1.3 GHz RFD Cavity Design

• Pole separation – 25 mm

Jeffei

son Lab

- Beam aperture increased 40 mm \rightarrow 50 mm
 - Large beam aperture allows better HOM extraction
- Optimized the pole shape (pole height and length):
 - To maintain maximum achievable $V_{\rm t}$ at 1.35 MV
 - While maintaining peak surface field requirements of $E_p < 45$ MV/m and $B_p < 80$ mT

Property	1-cell	1-cell-new
Operating frequency [GHz]	1.3	1.3
1 st HOM [GHz]	2.142	2.089
$E_{\rm p}/E_{\rm t}^{*}$	3.83	3.76
$B_{\rm p}/E_{\rm t}^{*}$ [mT/(MV/m)]	6.84	6.80
$B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]	1.79	1.80
G [Ω]	129.9	129.54
<i>R/Q</i> [Ω] (V ² /P)	444.8	440.4
$R_{\rm t}R_{\rm s}\left[\Omega^2\right]~({\rm V}^2/{\rm P})$	5.78×10 ⁴	5.70×10 ⁴
*Reference length V/E _t = $\lambda/2$ [mm]	115.3	115.3
V _t [MV]	1.35	1.35
E _p [MV/m]	44.8	44.2
<i>B</i> _p [mT]	80.1	79.6
Pole separation [mm]	25	
Beam aperture [mm]	40	50
Cavity Length [mm] (flange-to-flange)	310	310
Cavity Diameter [mm]	100.3	99.4
Pole Length [mm]	80	85
Pole Height [mm]	42	31.5
Angle [deg]	22.5	22.5
99977	•	

Higher Order Mode Damping

Transverse HOM Impedances – Design Review #2 (06/2022)

- Pole separation = 25 mm and beam aperture = 40 mm
- Total impedance threshold: $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity: $Z_x = 8.13 \text{ M}\Omega/\text{m}$ and $Z_y = 10.28 \text{ M}\Omega/\text{m}$ (6 cavities)
- Two modes (2.142 GHz and 3.02 GHz) above impedance threshold

• Impedances calculated using circuit definition

Transverse HOM Impedances – Design Option 1

- Pole separation = 25 mm and beam aperture = 50 mm
- Total impedance threshold: $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity: $Z_x = 8.13 \text{ M}\Omega/\text{m}$ and $Z_y = 10.28 \text{ M}\Omega/\text{m}$ (6 cavities)
- Transverse-X mode at 2.089 GHz has very small margin from threshold
 - Limited rotation angle for HOM2 and HOM3 on the 50 mm beam pipe

• Impedances calculated using circuit definition

E Field

2.089 GHz

TE21 type mode

Transverse HOM Impedances – Design Option 2

- Pole separation = 25 mm and beam aperture = 50 mm
- Total impedance threshold: $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_v = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity: $Z_x = 8.13 \text{ M}\Omega/\text{m}$ and $Z_y = 10.28 \text{ M}\Omega/\text{m}$ (6 cavities)
- Rearranged HOM dampers on the beam pipes \rightarrow More rotation angle for HOM2 and HOM3
- Well damped HOMs with margin

• Impedances calculated using circuit definition

Loss Factor for Longitudinal HOMs

- Longitudinal wakefield for a short-range wake of 50 mm for several bunch lengths
- Simulated with CST
- Extrapolated loss factor for the ILC bunch length $\sigma_z = 0.3 \text{ mm} \rightarrow 44 \text{ V/pC}$

- Need to verify with Gdfidl
- Is this acceptable?

Summary from Design Review #2 (06/2022)

0.036 -

0.03 0.024 0.018

0.012

0.006 -

- Multipacting Analysis Completed for bare cavities
 - Need to complete the analysis for full cavity including FPC and HOMs

•

- Stress Analysis At 2 K
 - Well within allowable maximum stress of 43.5 Pa
 - For cavity thickness of 2.5 mm
- **Pressure Sensitivity** At RT
 - df/dP ≈ 730 Hz/mbar for
 2.5 mm cavity thickness

- Lorentz Detuning At 2 K
 - *k*_L ≈ 7.44 [kHz/(MV)²] for 2.5 mm cavity thickness

- Tuning Sensitivity At 2 K
 - Tuning range ≈ 1.96 MHz
 - 8.5 MHz/mm at 1.6 kN and 0.23 mm displacement per side

Page 10

Conceptual He Vessel and Cryomodule Design

Two beamline separation At 1 TeV – Cryomodule required to fit in within 3.8 m • 14.049m x 0.014rad = 197mm H. Hayano 1-cell cavity • QFEX2AS QDEX1S 6 cavities in a single cryomodule CRAB QF1 SF1 SD0 ZVFONT 14.049m Second beam pipe – 20 mm beam pipe • Total achievable – 8.1 MV (1.24 MV V_t per cavity) 1-cell cavity • ~10% extra margin Design concept follows JLab C100 cryomodule Cryomodule length = 3.4 mCryomodule diameter = 0.82 m 3.4 m YC **Center for**

Accelerator Science

Cavity Fabrication Sequence

•

٠

۰

Accelerator Science

OMINION

Summary

- Updated 1-cell cavity design: 25 mm pole separation with increased beam aperture of 50 mm
 - Increased beam aperture allows better HOM extraction
- 1-cell cavity meets current specifications in:
 - Dimensional requirements, peak surface fields with required transverse voltage
 - Preliminary mechanical analysis is completed
- HOM damping with the rearranged HOM dampers on the beam pipes
 - Improved transverse impedances with sufficient margin
 - Need to verify longitudinal effects with a secondary simulation on Gdfidl or other code
- Initial cavity design is completed with FPC and HOM damping scheme
 - Need to do multipacting analysis on the full cavity including FPC and HOMs

Summary

- Cryomodule design
 - − For 250 GeV \rightarrow Requires 2 1-cell cavities
 - − For 1 TeV \rightarrow Requires 6 1-cell cavities \rightarrow Fits within beam line space of 3.8 m
- The design can be extended to 2-cell cavity for 1 TeV high energy
 - To achieve compact cryomodule design
- Need to further improve the cavity geometry considering
 - Fabrication feasibility
 - He jacket design
 - Tuner design

Back Up Slides

1.3 GHz RFD Cavity for ILC

	250 GeV	1 TeV
Max $V_{\rm t}$ per cavity [MV]	1.35	1.35
Total V _t [MV]	1.845	7.4
Number of cavities	2	6
V _t per cavity [MV]	0.9225	1.234
Extra margin per cavity [MV]	0.43	0.12

Fundamental Power Coupler

- Coupling using coaxial antenna
 - Similar to LCLS II power coupler
- Beam current: $I_{\rm b} = 10 \, {\rm mA}$
- Beam offset: $\Delta x = 0.5 \text{ mm}$
- Microphonics: $\delta f = 50 \text{ Hz}$
- Cavity parameters:

	1-cell	2-cell
<i>R</i> / <i>Q</i> [Ω]	444.8	895.6
V _t per cavity [MV]	1.35	2.7
Q _{ext}	1.5	×10 ⁷
RF Power at the cavity [W]	300	600
RF heating at Cu probe [W]	1.2	2.22

Multipacting Analysis

- Resonant particles traced for 50 rf cycles with impact energy 20-2000 eV
- Simulated for a 1/8th surface area

Center for

Accelerator Science

OLD

DMINION

Stress Analysis

- Analysis at 2.2 atm external pressure
- Nb material properties at room temperature
 - (JLAB-TN-09-002 C100 Cryomodule Niobium Cavity Structural Analysis)
 - Young's modulus 82.7 GPa (1.2×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3 mm
- Boundary conditions Cavity constrained at beam pipes and FPC
- Allowable stress < 43.5 MPa
- Maximum stress
- Initial analysis shows cavity doesn't require stiffening
- Cavity can be machined with varying thickness

Tuning Sensitivity

Cavity

Туре

1-cell

2-cell

Total

Displacement

0.23 mm

0.27 mm

Tuning

Sensitivity

8.5 MHz/mm

4.1 MHz/mm

OMINION

Tuning

Range

1.96 MHz

2.23 MHz

Center for

Accelerator Science

- Nb material properties at cryo temperature
 - Young's modulus 123 GPa (1.79×10⁷ psi)
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC

Pressure Sensitivity

- Nb material properties at room temperature
 - Young's modulus 82.7 GPa (1.2×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC
- Stiffening at poles can reduce pressure sensitivity

Cavity Type	d <i>f/</i> dP [Hz/mbar]
1-cell	561.3
2-cell	751.5

• Stiffening at poles can reduce pressure sensitivity

9992

Lorentz Detuning

- Nb material properties at cryo temperature
 - Young's modulus 123 GPa (1.79×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC
- Lorentz detuning can be reduced by tuner
 - Tuning by push/pull at top and bottom of the cavity

Cavity Type	k _L [kHz/(MV)²]	Vt [MV]	Δ <i>f</i> [kHz]
1-cell	-3.67	1.35	6.7
2-cell	-1.11	2.7	8.1

9992

Center for

Accelerator Science

Multipole Components

- Higher order multipole components for the bare cavity
- Requires a finer mesh along the beam center

on Lab

Jef

Component	Units	1-cell	2-cell
Vz	[V]	0.575	-77.25
V _t	[V]	1.0E+06	1.0E+06
b ₀	[mT/m ²]	0	0
b ₁	[mT/m]	3.3	3.3
b ₂	[mT]	-0.0013	-0.00045
b ₃	[mT m]	2275.8	2106.6
b ₄	[mT m ²]	9.2	3.2
b ₅	[mT m³]	-1.39E+6	-1.43E+6
b ₆	[mT m4]	-4.83E+4	-1.68E+4
b ₇	[mT m ⁵]	-1.97E+9	-1.89E+9

C100 Cryomodule Design

Page 24

Final Design for JLEIC Crabbing System - 952 MHz 2-cell RFD

952 MHz RFD - Fabrication in Progress

- Material cost sheet Nb forming instead of machining
- Avoid weld seams at high mechanical stress area and high surface magnetic field area
- Use of simple weld only high production yield
- Strategy relevant to final cavity with HOM dampers

Supported by grant from the state of Virginia through SURA

Summary

- Further HOM damping schemes to be explored
 - LHC-RFD HOM coupler option
 - Waveguide damping option
- Final choice will be decided based on
 - RF properties including HOM power
 - Engineering and manufacturing complexity

