

Crab Cavity Design Options

Double Quarter Wave (DQW)

Silvia Verdú-Andrés (BNL) and Rama Calaga (CERN)

October 21, 2022

DQW Design Evolution

- 400 MHz
- Vertical kick
- With waist
- Elliptical profile
- ... No clearance issues, ease fab, reduce cost
- e ...Further reduce peak fields \rightarrow

EIC

- 200, 400 MHz
- Horizontal kick
- Flat walls

 \rightarrow

Cassini" oval profile

Max. peak surface H
Image: Constraint of the second se

Comparison between cavity models

X

	LHC-type DQW (B05)	EIC-type DQW (A42)	LHC+EIC-type (C02)	
Aperture, capacitive plate distance (mm)	20	20	20	
Profile	Elliptical, with waist	Oval, straight walls	Oval, with waist	
Dimensions: L x W x H (mm)	95 x 100 x 88	115 x 98 x 82	117 x 76 x 97	
Circuit Rt/Q (Ohm)	309	333	311	
Geometric factor (Ohm)	80	82	97	
Epk (MV/m) at 1.86 MV	50	56	55 ←	
Bpk (mT) at 1.86 MV	99	81	84 ←	
First HOM (GHz)	1.74 (z)	1.98 (z)	2.18 (z) ←	
			Addad advantages	

Ζ

Added advantages: broad inductive plate to accommodate ports, ease cleaning

ILC 1.3 GHz: DQW aperture study

All LHC+EIC DQW type with oval (Cassini) profile and waist.

Aperture (mm)	30*	25* (NEW)	20	
Dimensions: L x W x H (mm)	126 x 91 x 106	117 x 82 x 104	117 x 76 x 97	
Circuit Rt/Q (Ohm)	153	211	311	
Geometric factor (Ohm)	104	102	97	
Epk (MV/m) at 1.86 MV	63	58	55	
Bpk (mT) at 1.86 MV	109	99	84	
First HOM (GHz)	1.84 (z)	2.00 (z)	2.18 (z)	

* Peak fields may be further reduced with refined optimization

#cavities for 500 GeV (Total Vcc = 7.4 MV)	5	
#cavities for 125 GeV (Total Vcc = 1.86 MV)	2	

* with adopted max. allowable peak fields of 45 MV/m and 80 mT

S. Verdú-Andrés (BNL) | ILC DQW CC | Slide 4

ILC 1.3 GHz: Power Requirement

Input power required by detuned ($\Delta \omega$) crab cavity ($\varphi_b = 0$) loaded by offset beam (y):

$$P_{g} = \frac{1}{8} \frac{|\overrightarrow{V_{\perp}}|^{2}}{(R/Q)_{\perp}Q_{load}} \times \left\{ \left[1 + \frac{2(R/Q)_{\perp}\kappa y Q_{load} * I_{b0} \cos\varphi_{b}}{|\overrightarrow{V_{\perp}}|} \right]^{2} + \left[2Q_{L} \frac{\Delta\omega}{\omega_{0}} + \frac{2(R/Q)_{\perp}\kappa y Q_{load} * I_{b0} \sin\varphi_{b}}{|\overrightarrow{V_{\perp}}|} \right]^{2} \right\}$$

ILC CC Specs v11	125 GeV, 10 Hz upgrade	500 GeV
Frequency $\omega_0/2\pi$ (GHz)	1.3	1.3
Total V_{\perp} (MV)	1.86	7.4
I _{b0} (mA)	8.75	7.6
No. DQW cavities	2	5
V_{\perp} per cavity (MV)	0.93	1.48
DQW R/Q_{\perp} (Ω , circuit)	211	211
Max. offset y (mm)	0.5	0.5
Detuning $\Delta \omega/2\pi$ (Hz)	50	50

 \Rightarrow Take target Qe = 1e7, with 130 Hz bandwidth and 300 W power req.

ILC 1.3 GHz: FPC

Several options inspected (all using 40 mm Ø tube for DN40 CF flange):

Mode spectra w/o HOM Couplers

ILC 1.3 GHz: HOM Couplers

Three main approaches under consideration:

S. Verdú-Andrés (BNL) | ILC DQW CC | Slide 8

Promising first results for 1.3 GHz ILC DQW with single HOM coupler and TESLA filter but some work ahead to define adequate HOM extraction system.

Integration: cryomodule, 2nd beam pipe

- For 1 TeV CoM beam scenario, <u>5 DQW cavities</u> are sufficient to provide a <u>7.4 MV crabbing kick at 1.3 GHz</u>.
- Length available of <u>3.25 m enough</u> for crab cavities and other necessary components (cold-warm transitions, gate valves, etc.).
- ▷ Sufficient clearance to 2nd beam pipe for coupler integration.

Summary and Overview

- The <u>DQW</u> cavity is a <u>compact solution for the ILC crabbing system</u>. Two <u>single-cell cavities</u> provide <u>1.86 MV with safe max. peak fields</u>.
- ▷ Tuner and coupler integration can be borrowed from HL-LHC and EIC.
- Cavity compactness opens the possibility of manufacturing the cavity out of ingot, which in turn makes the port fabrication much easier and enables the implementation of port interfaces with smooth surfaces for peak field reduction. (The HOM coupler for the HL-LHC DQW was made from ingot and demonstrated good performance.)
- Fabrication and <u>testing of a prototype</u> will help the decision on how many cavities are needed to provide the required crabbing kick for ILC.
- ▶ <u>To be done</u>: coupler design and integration, multipacting, mech. analysis.

Fundamental mode, f(0)

HOM01, f(1)

A/m 97846

× ×

HOM02

https://vacgen.com/34mm-od-6mm-id-304I-rotable-bored-cf-flange

316LN (2D Forged) Rotatable Bored CF Flanges (CFRL Series)														
DN Number					Flange Thickness B mm			Rotatable Tube Bore E mm	BoltHole PCD F mm				Shipping Weight (kg)	
DN16	34	1.33	Clear	6.4	7.6	N/A	6.4	19.3	27	4.3	6	6.35	0.1	CFR34-6-LN
DN40	70	2.75	Clear	40	3	4.8	41.3	41.9	58.7	6.8	6	41.27	0.3	CFR70-41-LN
DN63	114	4.5	Clear	68	17.5	8	70	71	92.1	8.4	8	69.8	0.9	CFR114-70- LN
DN100	152	6	Clear	99.4	20	9.5	101.9	104.9	130.2	8.4	16	101.6	1.7	CFR152-102- LN
DN160	203	8	Clear	149.7	22	9.5	152.6	155.7	181	8.4	20	152.4	2.6	CFR203-153- LN
DN200	254	10	Clear	200.4	24.5	9.5	203.5	206.4	231.8	8.4	24	203.2	3.7	CFR254-206- LN
All dimensions are in mm unless otherwise stated														