

The ILC Parameter Plane

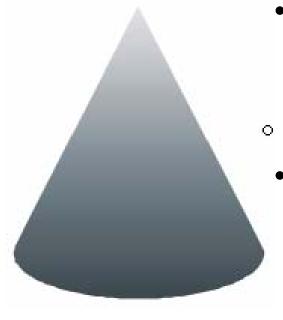
Tor Raubenheimer GDE SLAC

September 20-22, 2006 MAC Review

Global Design Effort

1

- Parameter plane established at KEK ILC mtg
- TESLA TDR pushed parameters:
 - Emittance dilution
 - Disruption and kink instability
 - Luminosity enhancement
- Parameter plane established for flexibility in achieving goal of 500 fb-1 in 4 years
 - Accelerators rarely optimize at design parm.
 - SLC, HERA, PEP-II, KEKB, DAPHNE, ...
 - Linear collider has fewer options for optimization
 - Already used most tricks to maximize specific luminosity


September 20-22, 2006 MAC Review

Global Design Effort

TESLA peak luminosity

3×10³⁴

- Possible due to very high beambeam disruption $(D_v \sim 25)$
- Well into kink
 - instability regime (unstable)

ILC peak luminosity

2×10³⁴

parameterLittle head roomspaceto play with

parameter space

Schematic from Nick Walker, LCWS 2005

September 20-22, 2006 MAC Review

Global Design Effort

3

- Nominal reduced Dy and more reasonable ϵ budget $\rightarrow 2x10^{34}$ with similar *L* spectrum
- Provide paths to deal with:
 - IP: kink instability \rightarrow Lower Dy (LowN)
 - IP: beamstrahlung \rightarrow Lower dB (LowN)
 - Dumps or losses \rightarrow lower power (LowP)
 - RF pulse length \rightarrow shorter pulse (LowP)
 - RF peak power \rightarrow lower current (LowP)
 - LET: emittance preservation → (LargeY)
 - DR: SBI \rightarrow Lower N (lowN)
 - DR: CBI or kicker \rightarrow fewer bunches (LowP)
 - DR: bunch length \rightarrow dual stage BC

September 20-22, 2006 MAC Review

- Concern that the design has 2.5x L overhead
 - Linear colliders have limited operating space
 - Many parameters are already at (over) the limit
 - Beam power, gradient, DR emittances, ...
 - Additional parameter space is primarily gained by focusing harder
 - Requires shorter IP bunch lengths or causes a large increase in IP disruption → some cost impact in BC
 - High luminosity parameters push everything to the design limit – unlikely to achieve L
 - Beamstrahlung increases and degrades luminosity cleanliness while complicating BDS operation

Significant cost savings in low Power design

- Four main cost impacts:
 - Single stage BC (-1%)
 - Eliminates options of LowP and LowN
 - Increases risk for DR, LET, abd BDS
 - Reduced RF system (-2% and another -1% civil)
 - Only allows LowP parameters at full energy
 - Increases risk in LET and BDS but reduces risk in DR
 - Possible to upgrade in quasi-adiabatic manner
 - Smaller damping ring circumference (-2~4%)
 - Only allows LowP parameters
 - Increases DR risk hard to upgrade

- Simpler extraction line design \rightarrow (-0.3%)

 Increases risk in BDS; Eliminates option of LowP and limits peak luminosity

Parameter range established to allow operating optimization

		nom	low N	lrg Y	low P	High L
N	×10 ¹⁰	2		2	2	2
n _b		2820	5640	2820	1330	2820
ε _{<i>x</i>,<i>y</i>}	μm, nm	9.6, 40	10, 30	12, 80	10, 35	10,30
$\beta_{x,y}$	cm, mm	2,0.4	1.2, 0.2	1, 0.4	1, 0.2	1, 0.2
$\sigma_{x,y}$	nm	543, 5.7	495, 3.5	495, 8	452, 3.8	452, 3.5
D_y		18.5	10	28.6	27	22
$\delta_{\!\scriptscriptstyle BS}$	%	2.2	1.8	2.4	5.7	7
σ_{z}	μm	300	150	500) 200	150
P _{beam}	MW	11	11	11	5.3	11
Lumi	10 ³⁴	2	2	2	2	5

- Clear trade for maintaining parameter plane versus adopting lowP parameters
 - How important is luminosity goal of 500 fb-1 in 4 years?
 - Personally believe that operating space will be needed to meet design goals but can lower the goals
 - How important is luminosity spectrum (Hitoshi's talk)?
 - Which is preferable 7% reduced energy or LowP only?
 - Reduced RF with full DR \rightarrow L ~ const vs Energy
 - Still have parameter plane at reduced luminosity of ~1x10³⁴ with reduced rf system
 - Is 50% luminosity worth 3% TPC?
 - Would this be an acceptable option for experimentalists?

September 20-22, 2006 MAC Review

Global Design Effort