

Comments for low P option for breakdown session

Andrei Seryi

ILC MAC meeting, September 20-22, 2006, KEK

Issues with low P

- Accelerator physics:
 - Extraction line losses
 - High disruption
 - Tighter focusing, tighter tolerances
 - Tighter collimation depth
 - Larger collimation wakes
 - Larger wakes due to vacuum chamber
 - ...
- Particle Physics: (Hitoshi's slides)
 - hits from pairs to VXD
 - background from pairs at BEAMCAL & LUMICAL
 - Energy bias of Lumi spectrum due to large Dy and beamstrahlung

	TESLA	USSC	Nominal	Low Q	Large Y	Low P	High Lum
E_cms (GeV)	500	500	500	500	500	500	500
N	2.00E+10	2.00E+10	2.00E+10	1.00E+10	2.00E+10	2.00E+10	2.00E+10
Nb	2820	2820	2820	5640	2820	1330	2820 *
T_sep (ns)	336.9	336.9	307.7	153.8	307.7	461.5	307.7
Buckets @ 1.3 GHz	438	438	400	200	400	600	400
I_ave (A)	0.0095	0.0095	0.0104	0.0104	0.0104	0.0069	0.0104
Gradient	23.40	28.00	30.00	30.00	30.00	30.00	30.00
IP Parameters							
gamepsX (m-rad)	1.00 E- 05	9.60E-06	1.00E-05	1.00E-05	1.20E-05	1.00E-05	1.00E-05
gamepsY (m-rad)	3.00 E- 08	4.00E-08	4.00E-08	3.00E-08	8.00E-08	3.50E-08	3.00E-08
BetaX	1.50 E- 02	1.50 E- 02	2.10E-02	1.20E-02	1.00E-02	1.00E-02	1.00E-02
BetaY	4.00 E- 04	4.00E-04	4.00E-04	2.00E-04	4.00E-04	2.00E-04	2.00E-04
SigX	5.54 E- 07	5.43 E- 07	6.55E-07	4.95E-07	4.95E-07	4.52E-07	4.52E-07
SigY	5.0 E- 09	5.7 E- 09	5.7E-09	3.5E-09	8.1E-09	3.8E-09	3.5E-09
SigZ	3.00 E- 04	3.00E-04	3.00E-04	1.50E-04	5.00E-04	2.00E-04	1.50E-04
Dx	2.26 E- 01	2.35E-01	1.62E-01	7.08E-02	4.68E-01	2.26E-01	1.70E-01
Dy	2.53 E+ 01	2.23E+01	1.85E+01	1.00E+01	2.86E+01	2.70E+01	2.19E+01
U_ave	0.054	0.055	0.046	0.061	0.036	0.100	0.133
delta_B	0.030	0.031	0.022	0.018	0.024	0.057	0.070
P_Beamstrahlung (W)	3.35 E+ 05	3.47 E +05	2.48E+05	2.05E+05	2.67E+05	3.06E+05	7.90E+05
N_gamma	1.477	1.504	1.257	0.823	1.664	1.756	1.725
Hd_x	1.061	1.069	1.022	1.002	1.465	1.061	1.026
Hd_y	5.317	5.071	4.727	3.764	3.211	4.142	5.037
Hd	1.80E+00	1.78 E +00	1.70E+00	1.56E+00	1.79E+00	1.65E+00	1.74E+00
Geometric Luminosity	1.64E+38	1.45 E +38	1.20E+38	1.29E+38	1.12E+38	1.24E+38	2.83E+38
Luminosity (m ⁻² s ⁻¹)	2.94E+38	2.57 E +38	2.03E+38	2.01E+38	2.00E+38	2.05E+38	4.92E+38
Coherent pairs/bc	7.14 E- 35	4.65 E- 34	7.71E-43	4.29E-31	3.19E-56	3.31E-15	2.21E-09
Inc. Pairs/bc	4.14E+05	3.66 E +05	2.59E+05	8.37E+04	3.50E+05	6.12E+05	6.37E+05

September 20, 06

Losses in extraction line

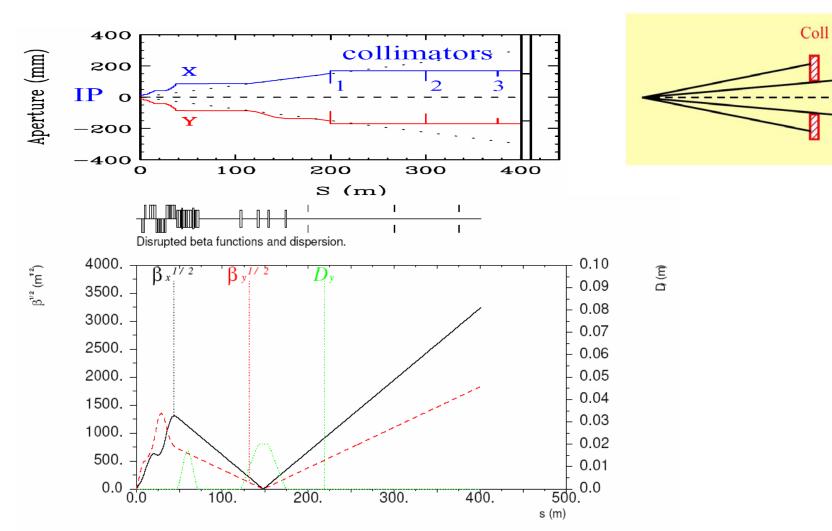


Figure 3: Disrupted beta functions and vertical dispersion in the 14 mrad extraction line. IP is at s = 0.

Dump

Y.Nosochkov

Table 1: Disrupted beam power loss in the 14 mrad extraction line for 0.75 mrad photon aperture model.

	x/y	Total electron loss (kW)				Total BS photon loss (kW)				Electron
CM energy	offset	Prior to Collimators		Prior to	Collimators			loss on SC		
	[nm]	collim.	1	2	3	collim.	1	2	3	quads [kW]
0.5 TeV	0 / 0	0	0	1.4	0.77	0	0	0.002	0	0
nominal (c11)	0 / 200	0.0009	3.8	25	2.7	0	0.09	13	0	0
0.5 TeV	0 / 0	0.27	11	88	18					0
low-P (c14)	400 / 0	0.21	13	83	18					0
	0 / 120	1.2	131	232	22	0.06	53	79	0	0
0.5 TeV	0 / 0	2.0	39	230	46	0	1.8	28	0	0.002
high-L (c15)	0 / 120	15.5	477	584	53	0.48	136	195	0	0
1.0 TeV	0 / 0	0.25	0.46	0.39	0	0	0	0	0	0
nominal (c21)	0 / 100	2.3	1.1	14	2.1	0	0	0.17	0	0
1.0 TeV	0 / 0	1.4	4.3	87	20					0
large-Y (c23)	200 / 0	1.2	5.6	87	21					0
1.0 TeV	0 / 0	18.0	6.9	74	17					0.010
low-P (c24)	200 / 0	17.7	5.9	87	19					0.013
	0 / 120	46	114	499	19	0.06	4.9	40	0	0.005
1.0 TeV	0 / 0	105	32	376	60	0.013	1.2	7.2	0	0.55
high-L (c25)	0 / 80	256	587	1404	69	0.99	47	276	0	0.58
1.0 TeV	0 / 0	1.8	1.5	1.4	1.4	0	0	0	0	0
high-L (c26)	0 / 100	10.2	4.2	203	17	0	0.07	2.1	0	0
1.0 TeV	0 / 0	1.3	0.84	0.94	0.15	0	0	0.003	0	0
high-L (c27)	0 / 100	6.7	4.3	119	8.4	0	0.04	0.90	0	0

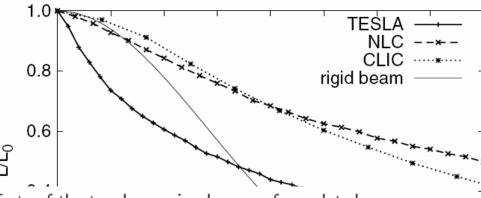
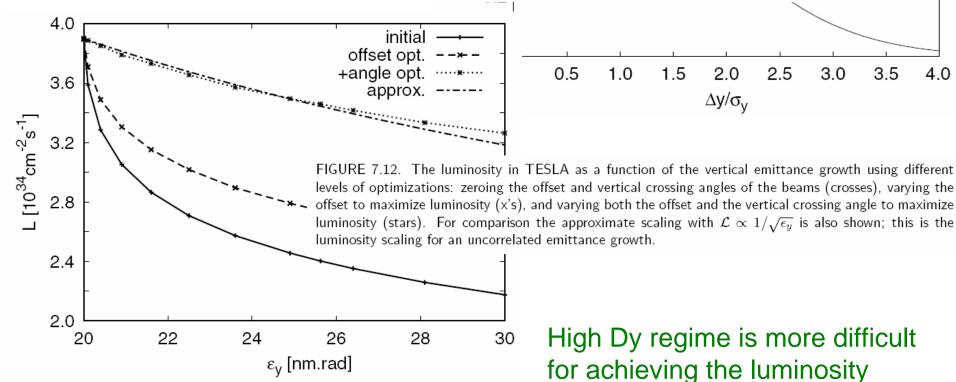
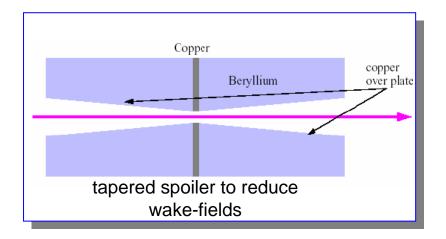



FIGURE 7.11. Luminosity as a function of the vertical offsets of the two beams in absence of correlated emittance growth. Left: offset in absolute values. Right: offset in units of beam size σ_u ; an approximation for the luminosity of rigid beams which do not focus one another is shown for comparison.

3.5


4.0

Collimation wakes

For typical spoilers, A_{β} scales as $A_{\beta} \sim \beta N / (\sigma_z^{1/2} \gamma gap^{3/2})$

or, equivalently, as
$$A_{\beta} \propto \frac{N \; L_{*}^{2}}{\gamma \; \beta^{*} \; \sigma_{z}^{1/2} \; R_{VX}^{3/2}}$$

Jitter amplification in y-plane (due to y') is $(1 + A_{\beta}^2)^{0.5}$ times

For Low P option, stronger focusing (β_y /2) and shorter bunch (/1.5) increase the A_β by about three times. The effect is ~1/E

Possible consequences:

Has to require smaller beam jitter coming from linac May have to degrade luminosity expectations at lower E May have to increase radius of vertex detector