

Toward a Cost Estimate for the ILC

Tetsuo Shidara, Wilhelm Bialowons, and Peter H. Garbincius GDE – Cost Engineers

September 20-22, 2006 MAC Review - Costs

- here's what we told you at Fermilab in April http://ilcagenda.cern.ch/conferenceDisplay.py?confld=290
- progress since then
- first round cost estimates Vancouver July06
 - characterization
 - what the data is telling us
- cost reduction studies and decisions
 - brief summary of each study
 - a detailed example by Andrei Seryi will follow

- Matrix of Machine Areas
 - vs. Technical & Global Systems
- Executive Committee:

Barry + 3 Regional Directors

+ 3 Accelerator Leaders

• RDR Management Team:

EC + 3CE + Integration Physicist

- Cost Engineers (Tetsuo, Wilhelm, Peter)
- Design Cost Board (PHG, chairman)
- Change Control Board (Nobu Toge, chairman)
- R&D Board (Bill Willis, chairman)

ilc

Organizational Matrix

Cost Roll-ups

Area Systems	e- source	e+ source	damping rings	RTML	main linac	BDS
Technical Systems Vacuum systems Magnet systems Cryomodule Cavity Package RF Power Instrumentation Dumps and Collimators Accelerator Physics						
Global Systems Commissioning, Operations & Reliability Control System Cryogenics CF&S Installation						

September 20-22, 2006 MAC Review - Costs

- RDR Cost Estimating Guidelines and Instructions
 <u>http://www-ilcdcb.fnal.gov/RDR_costing_guidelines.pdf</u>
 <u>http://www-ilcdcb.fnal.gov/RDR_Cost_Estimating_Instructions_23may06.pdf</u>
- Confidentiality Rules

http://www-ilcdcb.fnal.gov/cost-confidentiality-official-njw.pdf http://www-ilcdcb.fnal.gov/vancouver_cost_discussion_guidelines.pdf

- *First cost estimates* were obtained in early July for consideration at Vancouver meeting estimates are preliminary, need completion, checking, iterations, & review of requirements.
- They are in the spirit of an ITER-like VALUE estimate e.g. no labor, no contingency, no overheads

September 20-22, 2006 MAC Review - Costs

Confidentiality of Cost Estimates

- to protect Industrial Estimates
- to prevent biasing bidding process
- to insure independent estimates from 3 regions
- All cost estimates must be treated as confidential within the GDE not to be publicly presented or posted on a public web site
- Makes it more difficult to study and review the estimates, both internally and externally.
 Executive Committee has granted need-to-know "review access" = see, but don't take away to CCB, for example

September 20-22, 2006 MAC Review - Costs

Major Components of Estimate

- 4 Site Dependent Civil Construction Estimates
 - CERN, DESY, Japan, Fermilab (estimate for each site)
- Other conventional facilities estimates
 - site-independent
 - power, HVAC, cooling, fire protect., hoisting, safety
 - each estimated by single region need cross-checks
- Technical Cost Drivers: Cavities, Cryomodules, RF
 - independent estimates from each of 3 regions
 - based on Industrial Studies (not yet US for Cavities/CM,
 - US Cavities/CM estimate is an engineering model)
 - comparisons are on-going at KEK this weekend
- Other items have **single** engineering level estimates
 - based on world-market (lowest cost) estimates
 - often based on prior purchasing experiences

Have > 90% of cost estimates adequate for rough assessment and starting studies

ilc

System	Cost Ests July 18, 2006 \checkmark				since √ Sept 20, 2006				Regional		
description	common	e-	e+	DR	RTML	ML	BDS	Exp	Am	Asia	Eur
e- Source											
e+ Source			\checkmark								
DR											
RTML											
Main Linac											
BDS							\checkmark				
Com, Op, Reliab											
Control System		\checkmark	\checkmark				\checkmark				
Cryogenics		\checkmark	\checkmark				√ *				
Convent. Facilities		\checkmark	\checkmark				$\sqrt{*}$	\checkmark	\checkmark	\checkmark	\checkmark
Installation		\checkmark	\checkmark				\checkmark				
Instrumentation		\checkmark	\checkmark				\checkmark				
Cavities									\checkmark		
Cryomodules		\checkmark	\checkmark						\checkmark		\checkmark
RF		\checkmark	\checkmark						\checkmark	\checkmark	
Magnets & PS		\checkmark	\checkmark	√ *	\checkmark		$\sqrt{*}$				
Dumps & Collim		\checkmark			\checkmark						
Vacuum		\checkmark					\checkmark				
Accel Phys											
$\sqrt{1}$ = complete,	$\sqrt{*}$ = almost complete, missing something minor,								= need		

September 20-22, 2006 **MAC Review - Costs**

Let's look at ESTIMATES

- Don't ask what it costs!
- Too premature to answer, but due to confidentiality, I couldn't tell you
- Will show comparative, but not absolute costs, in pie charts and bar graphs; can learn a lot about cost drivers and where we need to spend effort at cost reduction
- Show, but not give (via website or hard copy) these sensitive plots
- For concreteness, will use Civil Engineering from the Americas in these plots

September 20-22, 2006 MAC Review - Costs **Global Design Effort**

September 20-22, 2006 MAC Review - Costs **Global Design Effort**

September 20-22, 2006 MAC Review - Costs **Global Design Effort**

> 300 MW

September 20-22, 2006 MAC Review - Costs **Global Design Effort**

RF Unit to power 3 CryoModules

September 20-22, 2006 MAC Review - Costs **Global Design Effort**

Cost Ests. for CryoModule w/Cavity based on different methods

- Europe scaled TESLA with 80% cavity yield most mature & value-based estimate will learn soon from XFEL experience
- Asia industrial studies
- Americas in-house engineering

 industrial study in process
- Asian & American estimates
 represent a "reality check"
- Main Linac, Cavities, & CM groups are meeting this weekend at KEK to compare details of estimates and try to resolve differences

~ big cost swing!

September 20-22, 2006 MAC Review - Costs

initially: Snowmass 05, Frascati, and the BCD baseline design was to meet the *technically challenging* goals

we must scrub and justify all cost estimates costs vs. goals and reliability

understand differences wrt TESLA & USLCTOS

beginning cost/performance optimization and tradeoff studies

September 20-22, 2006 MAC Review - Costs

Initiated(ing)Technical, Scope, Cost Reviews

- Power (≥ 320 MW) and Water Cooling!?!: specifications, requirements, implementation: chilled water, ΔT, temperature stability, etc.
 Marc Ross *et al.*
- Magnets and Power Supplies: help Technical Systems Group check requirements, design optimization, cost model Tom Markiewicz
- Conventional Facilities just setting up study with experts from Fermilab, SLAC, SACLAY. Are designs and estimates logical, technically sound, complete, correct, and optimized?

Cost Reduction Studies commissioned by RDR_MGMT at Vancouver

- 2 vs. 1 tunnel for Main Linac, RTML, BDS
- Conventional Positron Source (not Undulator)
- Centralized Damping Rings in single tunnel
- Single Bunch Compressor for RTML
- Half # bunches => half # klystrons for ML & RTML
- Change BDS from 20+2 mrad => 14+14 mrad
- Shallow (cut and cover) single tunnel w/gallery longer timescale than for Valencia

Cost Reduction Ideas from AS Leaders

- Remove 2 mrad crossing angle configuration change from 20 mrad + 2 mrad => 14 mrad + 14 mrad
 - Approved by CCB sent to Executive Committee
 - See Andrei Seryi's next presentation/discussion
- Remove Second Positron Damping Ring
 - Good progress on ion/electron cloud clearing continue R&D
 - Approved by CCB sent to Executive Committee
 - Saves ~ 1.9 % of total ILC estimate
- Change from 18 meter long + 9 meter long muon spoilers in Beam Delivery System to single 5 meter long spoilers
 - Now before CCB
 - Would reduce total ILC cost by ~ 0.4 %

Other ideas needing study and R&D

- Surface Assembly of Detectors (BDS)
 - as for CMS less expensive than underground
- Replace BDS Service Tunnels with Alcoves
 - radiation and reliability issues
- Optimize Experimental Halls (BDS)
 just big enough to cover each detectors needs
- Decrease TESLA cavity iris to 60 mm, and also ½ apertures of quads and BPMs
- Marx modulator & sheet beam klystron
- Reduce energy and cryogenics margins

Summary of RDR_MGMT Decisions at KEK meeting Aug 31 – Sept 1

- Centralized Damping Rings
 - electron and positron DRs in a single tunnel
 - make plan and cost estimate to submit to CCB
 - optimize BDS and e- and e+ Source geometries
 - would save ~ 1.7 % of total ILC cost
- Conventional Positron Source
 - Would reduce total cost by ~ 1.1 % wrt Undulator
 - Decide: Maintain Undulator & polarized e+ option
 - Encourage cost reduction studies for both undulator & conventional positron sources

RDR_MGMT Decisions @ KEK (2)

- Half-current (half-# bunches) in Main Linac & DR
 - Propose install ½ of Linac RF drivers (upgradeable later)
 - Reduce cost by ~ 4.1 % but reduce Luminosity by up to $\frac{1}{2}$
 - Defer consideration of smaller DRs at this time
 - ML Leaders to prepare proposal which would be passed by WWS Leaders and Parameters Committee for reaction and comments before sending to CCB
 - Retain 2nd Bunch Compressor in RTML for max Luminosity
- 2 vs. 1 tunnel
 - reliability/availability (extra cost for increased energy margin), radiation damage shielding, & personnel egress balance decreased tunnel costs
 - decided to stay with 2 tunnels
 - try to optimize to smaller diameter tunnels
 CF&S to report on this study over this weekend

- BDS change from 20+2 mrad => 14+14 mrad
 - RDR_MGMT reviewed status of change reques
 - approved by CCB sent to Executive Committee
 - corresponds to ~ 2.0% of total ILC cost
 - Andrei Seryi will next present a detailed "case study"
- Still lots of hard work to do to produce a credible cost estimate

end of this presentation!

Backup Slides

September 20-22, 2006 MAC Review - Costs **Global Design Effort**

RDR Cost Estimating

Instructions and Standards

Table of Contents

- 0. Acknowledgements
- 1. Introduction and Cost Consciousness
- 2. What is included in the estimate
- 3. Definitions of Responsibility
 - 3.a. Design Cost Board (DCB)
 - 3.b. Area Systems leaders
 - 3.c. Technical Systems leaders
 - 3.d. Global Systems leaders
- 4. Work Breakdown Structure for submitting cost estimates
 - 4.a. Definition and content
 - 4.b. Checklist: elements due by June 25, 2006 (before Vancouver)
 - 4.c. Checklist: elements due by Sept. 15, 2006
 - 4.d. WBS information to be provided

September 20-22, 2006 MAC Review - Costs

Instructions (continued)

- 5. Cost Estimating Instructions
 - 5.a. Project Schedule
 - 5.b. System Boundaries
 - 5.c. Graded Approach
 - 5.d. Scaling from Other Projects
 - 5.e. Learning Curves
 - 5.f. Cost Estimates (50% point and uncertainties)
 - 5.g. Include NO contingency
 - 5.h. Spares
 - 5.i. The 5 Horsemen (additional costs beyond acquisition)
 - 5.j. Cost Sensitivities
 - 5.k. Watch out for duplication
 - 5.I Transportation costs

5.m Optimization – Construction Costs vs. Long Term Operations

These RDR Cost Estimating Instructions and Standards contain lots of URL links to further details and examples

September 20-22, 2006 MAC Review - Costs

- Complete checks of designs and estimates
- Uncertainties and cost probability distributions
 - risk budget, 95% limits, contingencies
 - market factors as for LCLS construction
- Production quantity cost reductions
 - De-rate gain to ½ as per XFEL?
- Gradient distribution for Cavity performance
 Included 80% yield, continue R&D, but what it...
- Klystron performance and reliability
 - Need more experience to understand risk
- Underground construction risks

- underground construction includes: tunnels, shafts halls, caverns, and misc = personnel passages and penetrations between tunnels for waveguides, power, and instrumentation
- Note: common design optimized for deep site was used, putting DESY at competitive cost comparison disadvantage – requested an additional (2 tunnel) study optimized for DESY site geology.

Cost Correlations: AS vs. TS/GS

September 20-22, 2006 MAC Review - Costs

Extrapolating to Large Quantities

- Industrial Studies such as TESLA
 give estimate for full quantities
- Engineering Studies (e.g. US CM/Cavities) assumes a typical "learning curve"
- Some items, e.g. magnets and PS estimates were "one-of" costs scaled by quantity
- Optimism ⇔ ? Reality ? ⇔ Conservatism
- XFEL's "risk" budget included provision for only getting ½ of the cost reduction due to production of large quantities
- Big issue really have to understand this!

September 20-22, 2006 MAC Review - Costs

Slide Title

- Main
 - Subpoint
 - Sub, sub point