

Availability – Tom Himel MPS – Marc Ross Safety – Vic Kuchler

1

- Availability is a concern because ILC will be the largest most complex accelerator ever built.
- If we don't do better on typical components than present HEP accelerators, it will be down all the time.
- Have done extensive studies with a simulation to determine required MTBFs and effects of various layouts
- Have started developing high availability components

Are 2 tunnels needed?

• • • •			Are	2 tu	nne	ls ne	eede	ed?
Run Number	LC description	Simulated % time down incl forced MD	Simulated % time fully up integrating lum or sched MD	Simulated % time integrating lum	Simulated % time scheduled MD	Simulated % time actual opportunisti c MD	Simulated % time useless down	Simulated number of accesses per month
ILC8	everything in 1 tunnel; no robots ; undulator e+ w/ keep alive 2; Tuned MTBFs in table A	30.5	69.5	64.2	5.3	2.2	28.3	18.1
ILC9	1 tunnel w/ mods in support buildings; no robots; undulator e+ w/ keep alive 2; Tuned MTBFs in table A	26.5	73.5	68.1	5.5	2.0	24.4	11.1
ILC10	everything in 1 tunnel; with robotic repair ; undulator e+ w/ keep alive 2; Tuned MTBFs in table A	22.0	78.0	73.0	5.1	2.4	19.5	5.9
ILC11	2 tunnels w/ min in accel tunnel; support tunnel only accessible with RF off; undulator e+ w/ keep alive 2	22.9	77.1	72.3	4.8	2.7	20.2	3.7
ILC12	2 tunnels with min in accel tunnel; undulator e+ w/ keep alive 2; Tuned MTBFs in table A	17.0	83.0	78.3	4.8	2.8	14.2	3.4
ILC13	2 tunnels w/ some stuff in accel tunnel; undulator e+ w/ keep alive 2; Tuned MTBFs in table A	21.3	78.7	73.8	4.8	2.7	18.7	9.7
ILC14	2 tunnels w/ some stuff in accel tunnel w/ robotic repair; undulator e+ w/ keep alive 2; Tuned MTBFs in table A	17.0	83.0	78.2	4.8	2.8	14.3	3.5
ILC15	ILC9 but table B MTBFs and 6% linac energy overhead	14.7	85.3	79.4	6.0	1.5	13.1	5.6
_{ILC16} 21S	ILC15 but table C MTBFs and 3% linac energy	15.2	84.8	79.2	5.6	1.9	13.3	3 6.5

The need for a Keep-Alive e+ source

- The fact that high energy e- are needed to make e+ hurts the availability of the undulator e+ source for 4 reasons
 - Can't do MD simultaneously in e.g. e+ and e- DR
 - Can't do opportunistic MD in e.g. e+ linac when the e- linac is broken
 - Can't keep e+ system "hot" when e- are down, so extra tuning time is needed.
 - e- linac must have correct energy at both undulator and at the end.
- A keep-alive e+ source can ameliorate 3 of these problems.
- Increases time integrating luminosity from 68% to 78%
- Any e+ keep-alive source with bunch intensity high enough for diagnostics to work <u>well</u> is OK

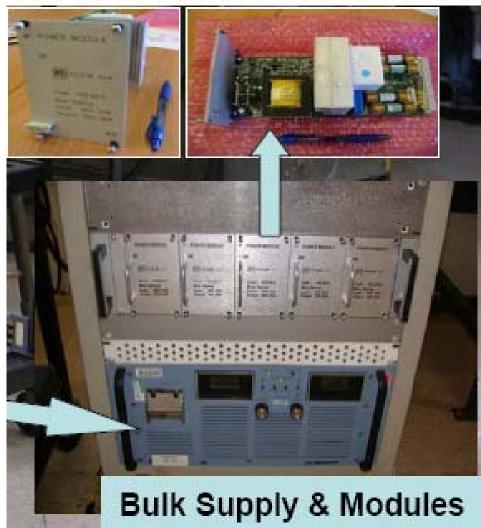
Should e+ and e- DR be in one tunnel?

- Pros
 - Less tunneling cost
 - Rings would probably be near IPs and central site, so transport time would be less when repairs are needed
- Cons
 - When access needed to one ring, no beam can be in other.
 Availsim says Int Lum decreases 0.7%
 - 2 or 3 rings in 1 tunnel could make maintenance difficult if not very carefully engineered.
- Prefer 2 separate tunnels, but both in 1 not a killer.

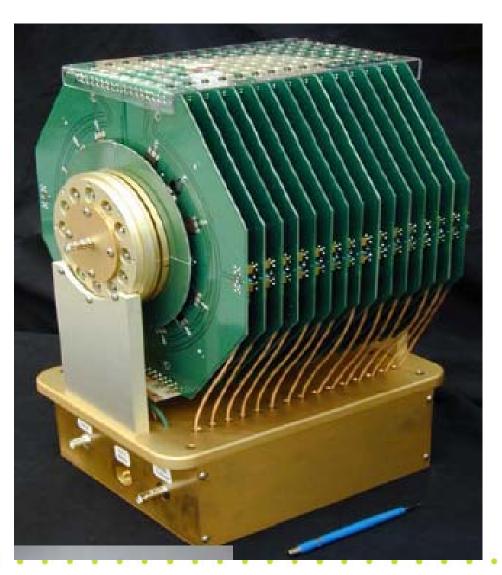
Needed MTBF Improvements:

Requirements for Tech Systems

	Improvement	Improvement	Improvement	yotomo
	factor A for 2	factor B for 1	factor C for 1	
	tunnel	tunnel undulator	tunnel undulator	
	conventional	e+ source, 6%	e+ source, 3%	Nominal MTBF
Device	e+ source	energy overhead	energy overhead	(hours)
magnets - water cooled	20	20	20	1,000,000
power supply controllers	10	50	50	100,000
flow switches	10	10	10	250,000
water instrumention near pump	10	10	30	30,000
power supplies	5	5	5	200,000
kicker pulser	5	5	5	100,000
coupler interlock sensors	5	5	5	1,000,000
collimators and beam stoppers	5	5	5	100,000
all electronics modules	3	10	10	100,000
AC breakers < 500 kW		10	10	360,000
vacuum valve controllers		5	5	190,000
regional MPS system		5	5	5,000
power supply - corrector		3	3	400,000
vacuum valves		3	3	1,000,000
water pumps		3	3	120,000
modulator			3	50,000
klystron - linac			5	40,000
coupler interlock electronics			5	1,000,000
linac energy overhead • 🔹 •		• • • • • 3%		• • • • 3%

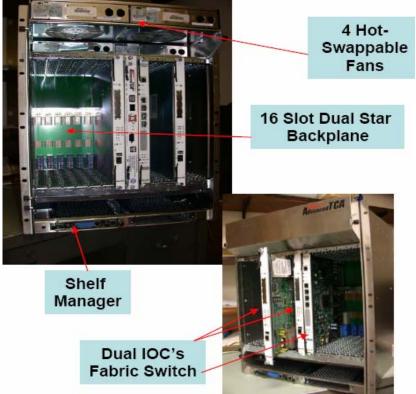


- Factor of 20 above our average MTBF of 1,000,000 hours seems formidable.
- However, a few magnet systems have been built with >10 million hour MTBFs. (Fermilab main ring, HERA e- ring)
- Labs' magnet engineers are working together to develop a set of HA design rules
 - No braze joints in the conductor
 - Pot the coils...
- Four HA prototypes (FMEA design method) have been built at SLAC and are running in the linac.


Power Supply work

- Building 40 HA PS for ATF2.
- Based on commercial design of n+1 regulators with current summing
- Prototyping small diagnostic boards that can be used in many places (incl PS) to remotely diagnose impending problems.

 Have prototyped and tested a DR kicker pulser that is modular.
 A card can die and it keeps running.


- Have adopted the Advanced TeleCommunications Architecture for the electronics
- This is a commercial HA standard for the telecom industry.
- Has redundant PS, redundant fans, redundant network links, redundant CPUs along with software to manage it all.
- Has true hot-swappable modules.
- We have bought a few shelves and are talking to companies to learn how to use ATCA.

Marx Modulator

- The Marx modulator is expected to be both cheaper and more reliable than the bouncer modulator.
- Each card is made so it can keep running with a few IGBTs or capacitors blown.
- Full voltage can be maintained with a bad card.

- + Have early, reasonably good grasp of what is needed to get high availability
- - required MTBF/MTTR improvements are significant
- + Have gotten started on some of the more important improvements
- - Others are not started yet
- It is difficult to test enough items for long enough to be sure we have achieved necessary MTBFs.
- Need to take advantage of accelerators built for other reasons to aid this testing.
- Need to continue HA effort, but expect will still have some problems which need to be remedied after ILC is built.

Machine Protection (MPS)

Marc Ross GDE

Machine Protection: LHC / ILC

- LHC:
 - 3000 bunches each with 1e11 protons
 - Damage at 3e-5 of nominal I
 - Loss of a small fraction of each bunch is a concern
- ILC
 - 3000 bunches each with 2e10 e+/e-
 - Damage at 3e-6 of nominal I
 - Loss of a single bunch (with I > 1% of nominal) is a concern
 - e.g. first bunch...
- Difference is emittance, stored energy vs single pass

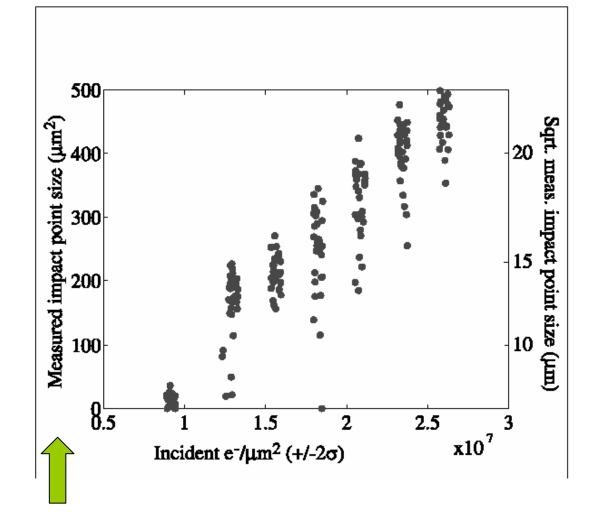
What are the most fearsome failure scenarios?

• LHC

;lr

İİL

- Full train with COD = aperture
- Single turn widespread damage (90us)
- Only one abort kicker
- ILC
 - Full train with oscillation amplitude=linac aperture
 - BUT: full train is 300 km long (30 times linac length)
 - No abort within linac (2 up / 1 down stream/ undulator)
- ILC linac indicated component / system failure:
 - Multiple (~10) quad failures
 - Common mode phase error > 50 degrees
 - Typical failure causes beam 'blowup'
- In both ILC / LHC fast transients must be prevented



MPS has:

- 1) single bunch damage mitigation system: (pilot bunch)
- 2) an average beam loss limiting system,
- 3) a series of abort kickers and dumps,
- 4) a restart ramp sequence,
- 5) a beam permit system,
- 6) a fault analysis recorder system,
- 7) a strategy for limiting the rate with which magnetic fields (and insertable device positions) can change,
- a sequencing system that provides for the appropriate level of protection depending on machine mode or state,
- 9) a protection collimator system

Results from the FFTB single bunch damage test

- 'puncture threshold' vs particle density
- Cu tests Cu / Nb similar
 - Nb tests not done
- ILC linac density tests not done
- energy

independent 1% pilot bunch at linac end (0.13 e7)

Pilot bunch

- Each startup sequence begins with an analysis of hardware / set point / controls software readiness
 - This is the 'summary interlock check' (-100 us)
 - beam checks in DR
- then benign 'pilot bunch' traverses the system and is used to validate subsystem performance
 - incapable of causing 'single pulse' damage
 - 1% of the charge
 - or 100 x the cross section
- the time elapsed since the last successful pulse is important
 - many systems remain static during 200ms interpulse period
- pilot bunch 'leader' for each machine pulse is possible

Machine Protection at LHC

- MPS is complex and detailed, and lessons learned are expensive in time and money.
 - ILC can learn from LHC
- The LHC will have more stored beam energy than any previous machine – 350 MJ
 - total energy is similar to a 747 at 1/3 of takeoff speed
 - the beam is so energetic, it is hard to deflect its trajectory quickly
 - the MPS is based on beam loss sensors
- There are several (relatively simple) failure modes that result in the destruction of the ~ machine (one of the rings) in one turn
 - the beam 'cuts' the vacuum chamber open along the mid-plane symmetry surface
- LHC MPS makes extensive use of redundancy and machine 'mode' controls
 - allowing flexibility only when the power is low
 - Locks components (software mostly) at high energy
 - Collimator control and tune-up is a major challenge

- 'Closest hardware'
- BDS Sacrificial spoiler / absorber design
 - optics and simulation studies mature
- R and D US / UK equal partners
 - damage and associated monitoring
 - beam tests within ~ 2 years
- design goal: aperture defining collimation upstream of linac

MPS within GDE:

- RDR 'Operations' Global System Leaders:
 - Himel, Elsen, Terunuma
- RDR Abort Technical System Lead (within Magnets):
 Mattison
- Components: RDR Area System Leaders
- Basic concept in baseline
- Recent (EuroTeV) report on linac failure modes
- Costing complete 2006
- MPS \rightarrow system integration challenge
 - ranked single highest risk subsystem in 2003 US Tech.
 Option
 - difficult to test

٠

•

. . .

. . . .

. . . .

.

.

. . .

- We must protect beamline components from simple beam-induced failure:
 - puncture this effect is new with ILC; older machines have lower charge density
 - heating
 - radiation
- A single nominal (2e10, ~few micron bunch) is capable of causing vacuum chamber puncture
- The full single beam 11 MW power has much more destructive capability
 - 1e14 W/cm^2 at the end of the linac
 - (2e23 W/cm^2 at the IP)
 - But there is time to detect and prevent this extreme power from damaging expensive hardware $-\rightarrow$ 1 ms train length
 - BDS entrance fast abort system

Transition from a single pilot pulse to full power operation (1)

- Neglect injector / source details
 - (actually very important with the undulator driven source)
- Require system checks before each pulse
 - depending on effects of various failure modes; may have a pilot every machine pulse
 - to be effective the pilot should be early enough to allow controlled beam shutoff in case a problem is discovered
 - during the pulse, 50 us or 1/20 of the beam has been extracted and not yet dumped...
 - the ILC BC, linac and BDS are long enough to hold 1/20 of the bunches
- If a problem occurs:
 - ring extraction must be stopped
 - the beam upstream of the problem location must be deflected to a protection dump
- fast, large amplitude deflecting kicks are not expected to occur in the linac itself.

Transition from a single pilot pulse to full power operation (2)

- once we know the path is clear,
 - 1) produce the nominal single bunch
 - 2) start to increase the number of bunches over a sequence of machine pulses (30 x 1/5 second...)
- As soon as the power becomes ~ kilowatts, average heating from (fractionally) small beam losses will be observed
 - Stop the sequence,
 - identify the mechanism
 - fix it
 - check it
 - Restart
 - (this could take time, and could result in a relaxation oscillator)

Injector startup

 parallel startup sequence using 'e+ keepalive' backup source

– e+ / e- to DR and BDS dump independently

• series startup using undulator source

- e- to linac dump before e+ are made

- injector beam power ~ 0.25 MW
 - undamped beam tails are less well controlled
 - e+ normalized emittance 1e-2

- MPS can cause large changes in beam intensity
 TTF experience
- Key components change depending on average beam power:
 - positron capture section RF
 - heated by target radiation
 - damping ring alignment
 - heated by synchrotron radiation
 - many SR sources and B-factories use 'trickle charge' to maintain stability
 - collimator position
 - beam heating will move the edges of the collimator jaws
 - Others? see homework question
- Performance will depend on thermal history
 - what happens on pulse *n* depends on *n*-1...

ilr

İİĹ

Machine Protection

- Machine Protection system manages the above functions
- Consists of
 - device monitors (e.g. magnet system monitors; ground fault, thermal sensors)
 - beam loss and beam heating sensors
 - interlock network with latching status
- Also
 - keeps track of T_{MPS}
 - tests and calibrates itself
 - is integrated into the control system
- Most vulnerable subsystems:
 - Damping ring, ring extraction to linac, beam delivery, undulator
- Most expensive (but not so vulnerable because of large cavity iris diameter):
 - linac

Failure modes

- Subsystem failures can direct the beam outside its nominal path
 - failed dipoles deflected trajectory
 - 'run away' movers
 - loss of accelerator RF incorrect energy
 - Also: damping ring coherent beam instabilities or
 - increased generation of beam halo
- Usually the control system will be aware of these conditions, but not always

Extreme beam deflections in the linac

- Failed dipoles
 - Dipole strength limited to correct ~3 mm offsets of quadrupole misalignment at 500 GeV (Bdip/(∂B/∂x))
 - this is ~10 σalignment
 - same dipole at low energies could correct for >30 times (500/15) that displacement
 - \Rightarrow beam outside of aperture
 - current limitation Imax(L) has to be built into hardware (firmware)
- Mis-steering / mis-adjusted dipole correctors
- Failed quadrupoles

 need ~30 to fail before the aperture is hit, and beam becomes large before hitting the cavity surfaces

- Limiting average power loss is set by personnel radiation exposure concerns
 - typical limit for normal materials (Copper, Steel) ~ 100 W/m
 - (100 x the limit for protons)
 - 100 w is 1e-5 of the nominal power
 - this is extremely low compared to existing electron machines
 - beam dynamics can contribute to this loss, in addition to small mis-alignments etc.
 - 5 sigma (probably beyond present day simulation code performance)
- component heating from beam loss is also a concern, also at 100 W level
- beam loss monitors with this degree of sensitivity are available.

<u>ilr</u>

İİİ

Life Safety & Egress

Regional Overview

ilr

- Each Region (Asian, European and Americas) has Varying Requirements that Determine Criteria for Life Safety and Egress
- These Differences have been Reviewed by the CFS Group and Used to Develop the Current Strategy for Life Safety and Egress for the ILC Project
- While Differences do Exist, Progress has been Made in Reaching International Consensus on Requirements for this Aspect of Conventional Construction
- All of the Requirements have the Same Intent, Safe Evacuation of all Occupants During Normal Operations or Emergency Conditions

Life Safety & Egress

Overview of Existing Guidance

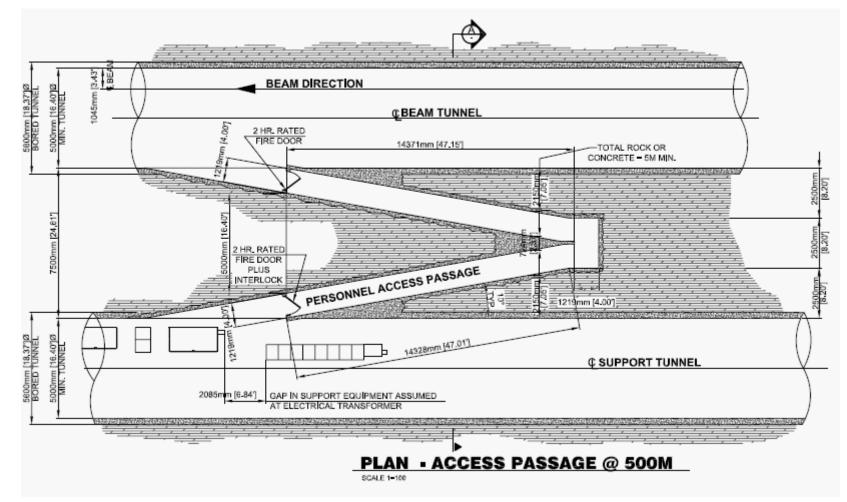
- Current Codes and Standards do not Directly Apply to Underground Installations like the ILC, but Progress Has Been Made in Code Development
 - NFPA 101-2003, Life Safety Code
 - International Building Code 2003
 - NFPA 130-2003, Transit Systems
 - NFPA 520-1999, Subterranean Spaces
- The Current ILC Design is Based on a Reasonable Interpretation on the Available Guidance with Input From Consulting Safety Engineers
- Cited Codes are Recognized in all Regions However the Authority Having Jurisdiction in Each Region will have the Final Authority for Approval

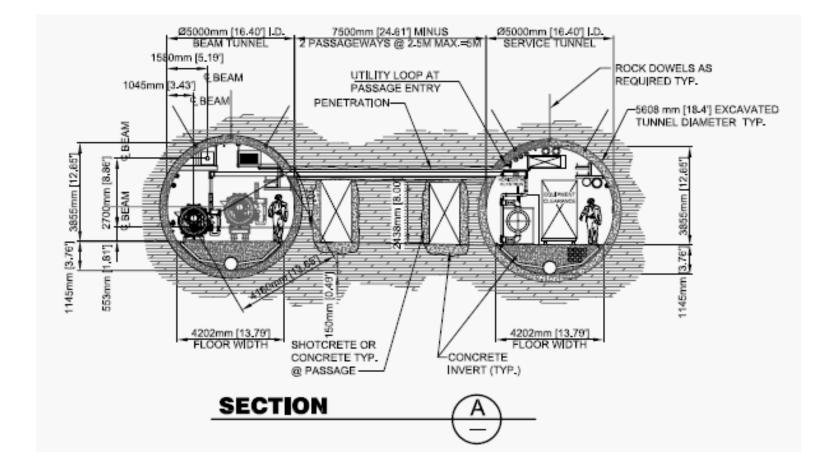
ilr

İİL.

Life Safety & Egress

EXIT DISTANCE OF VARIOUS EXISTING ACCELERATORS (FOR INFO ONLY)							
Laboratory	Name of Encisoure / Tunnei	Year Designed	Maximum Distance between exits	Exit to Discharge (see Note A)	Remarks		
	TEV	1968	243.84 m (800 Ft)	30.48 m (100 Ft)	Fire alarm and smoke detection at service buildings		
FNAL	Main Injector	1992	182.88 m (600 Ft)	21.336 m (70 Ft)	Fire alarm and smoke detection throughout enclosure; sprinkler protection at Alcoves and Service Buildings.		
	NuMI - MINOS	1999	0.91 Km (3000 Ft)	182.88 m (600 Ft)	Exit is to Passageway and exludes elevator travel distance. Passageway has automatic sprinkler protection		
SLAC	SLAC Linac	1962	200 m (330 ft)	~9 m (~30ft)	Opening to shaft ladder - 30ft up to Klystron Gallery- excludes travel distance up ladder.		
	PEP tunnel	1975	360 m (1,180 ft)	~6 m (~20ft)	PEP Tunnel diam. ~700 m (2,300 ft). Exits at 5 interaction regions (IR- 12, -2, -4, -6, and -8).		
CERN					Use of oxygen masks is compulsary Use of oxygen masks is compulsary		
CERRY	0.0	1011	1.111(11(3000111.))		cise of oxygen masks is comparedly		
	HERA	1984	1.5 Km				
DESY							
	КЕКВ	1985	~200m	~15m	Circumferernce: 3 km, 20 exits total. Thermo-detection at tunnel, smoke- detection at service buildings. Oxigen alarm at SCRF sector. Full ventilation of experiment halls at fire detection.		
KEK							
	Laboratory FNAL SLAC CERN DESY	Laboratory Name of Encisoure / Tunnel TEV Main Injector NuMI - MINOS SLAC SLAC Linac PEP tunnel LHC CERN DESY HERA DESY KEKB	Name of Encisoure / TunnelYear Designed $LaboratoryName ofEncisoure /TunnelYearDesignedI = 00000000000000000000000000000000000$	LaboratoryName of Encisoure / TunnelYear DesignedMaximum Distance between exits $RackTEV1968243.84 m (800 Ft)FNALMain Injector1992182.88 m (600 Ft)RackNuMI - MINOS19990.91 Km (3000 Ft)SLACLinac1962200 m (330 ft)RackLHC19963 Km (1.86 mi)CERNSPS19711.1 Km (3608 Ft.)REXHERA19841.5 KmDESYKEKB1985~200m$	Name of Enclsoure / Tunnel Year Designed Maximum Distance between exits Exit to Discharge (see Note A) FNAL TEV 1968 243.84 m (800 Ft) 30.48 m (100 Ft) Main Injector 1992 182.88 m (600 Ft) 21.336 m (70 Ft) NuMI - MINOS 1999 0.91 Km (3000 Ft) 182.88 m (600 Ft) SLAC SLAC Linac 1962 200 m (330 ft) ~9 m (~30ft) PEP tunnel 1975 360 m (1,180 ft) ~6 m (~20ft) LHC 1996 3 Km (1.86 mi) 100 m average CERN SPS 1971 1.1 Km (3008 Ft.) D m (direct, no sas) HERA 1984 1.5 Km — — LHC 1986 ~200 m ~15m		


EXIT DISTANCE OF VARIOUS EXISTING ACCELERATORS (FOR INFO ONLY)


Salient Features of Existing Design

- Twin Tunnel Configuration Provides a Reasonable Basis for an Appropriate Exiting Strategy
- Electrical Distribution Cables and Power Supply Equipment Comprise the Largest Hazard to the Underground Enclosures
- Crossover Passageways are Provided Between the Service Tunnel and Main Linac Accelerator Tunnel at Intervals of Approximately 500 m
- Shafts to Grade Levels (Vertical or Horizontal) are Spaced at 5 km Intervals Primarily to Accommodate Cryogenic Requirements

.

Life Safety and Egress

Salient Features of Existing Design cont

- Fire Detection and Alarm System
 - Smoke Detectors for Each 150 m² Floor Area
 - Manual Pull Alarms at 100 m Intervals
- Fire Suppression Equipment
 - Portable Fire Extinguishers at 25 m Intervals
- Evacuation Support
 - Connecting Passageways Between Twin Tunnel Layout
 - Smoke Control/Exhaust System Using Differential Pressure and Fresh Air Input to Provide Safe Means of Egress to Surface Areas
 - All Shafts to Surface Areas are Pressurized with Fresh Air to Maintain Air Quality in Exit Elevators and Stairways
 - Emergency Lighting at 10 m Intervals
 - Exit and Directional Signage in Accordance with Code Requirements

ilr

İİL.

Life Safety and Egress

Salient Features of Existing Design cont

- Communication Equipment
 - Public Address Systems
 - Phone System
 - Closed Circuit Monitoring and Security Camera System
- Emergency Power Equipment
 - Emergency Power System (Transition Time < 10 sec)
 - Standby Power System (Transition Time < 60 sec)
- He and N₂ Considerations
 - Differential Pressure with Ambient Pressure in Accelerator Tunnel Lower than in Service Tunnel
 - Oxygen Monitoring System with Auto Shut-off Capability
 - Self Contained Breathing Apparatus Equipment
- Fire Command Center
 - Dedicated and Protected Area with Status Condition
 Displays and Manual System Control

ilr

İİL

Life Safety and Egress

<u>Summary</u>

- The Current Design Solution Provides a Defendable Configuration and Addresses the Fundamental Intent of the Existing Code Guidance
- The Current Design Solution has Input from Consultant Fire Protection and Safety Engineers
- Most Code Guidance Allows "Equivalency" to Stated Requirements
- The Current Design Solution Affords Enough Detail to Provide a Credible Cost Estimate at This Time
- Further Refinement of Specific Aspects of the Design are Still Needed
- Interaction with Regional JHA's will be Required for Final Approval of Fire Protection and Life Safety Egress Designs