Physics/Software

Kyushu Univ. Shusaku Tsumura

Evaluation

- Accuracy $=\frac{\text { hits in each cluster predicted correctly }}{\text { True hits in each cluster }}$
- Output of network:
β vector (elements $=$ hits) : condensation point cluster space coordinates matrix (elements $=$ hits \times arbitary): Presentation space coordinates
\rightarrow Matching Method
\rightarrow We can get the list [True cluster label],[Hit ID]
Ex)

\rightarrow Problem: Fewer than I expected / Multi-tagged of cluster are attached to several hits.

Bias of input data

- Many showers include hits fewer than 10

Plan: Reduce data fewer than 10 Double particle gun simulation

Backup

Loss function - Network Learning -

- The object condensation approach :

Aiming to accumulate all object properties in condensation points

```
Assignment of vertices for
    each sower
```

- The value of $\beta_{i}\left(0<\beta_{i}<1\right)$ is used to define a charge q_{i} per vertex i

$$
q_{i}=\operatorname{arctanh}^{2} \beta_{i}+q_{\min }\left(\beta_{i} \rightarrow 1: q_{i} \rightarrow+\infty\right)
$$

- The charge q_{i} of each vertex belonging to an object k defines a potential $V_{i k}(x) \propto q_{i}$
- The force affecting vertex j can be described by

$$
q_{j} \cdot \nabla V_{k}\left(x_{j}\right)=q_{j} \nabla \sum_{i=1}^{N} M_{i k} V_{i k}\left(x_{j}, q_{i}\right)
$$

$$
M_{i k}=\left\{\begin{array}{c}
1(\text { vertex i belonging to object } k) \\
0(\text { otherwise })
\end{array}\right.
$$

Loss function

- The potential of object k can be approximated:

$$
V_{k}(x) \approx V_{\alpha k}\left(x, q_{\alpha k}\right), \quad \text { with } q_{\alpha k}=\max _{i} q_{i} M_{i k}
$$

- An attractive and repulsive potential are defined as:

$$
\begin{aligned}
& \breve{V}_{k}(x)=\left\|x-x_{\alpha}\right\|^{2} q_{\alpha k}, \text { and } \\
& \hat{V}_{k}(x)=\max \left(0,1-\left\|x-x_{\alpha}\right\|\right) q_{\alpha k}
\end{aligned}
$$

- The total potential loss $L_{V}=\frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K}\left(M_{j k} \breve{V}_{k}\left(x_{j}\right)+\left(1-M_{j k}\right) \hat{V}_{k}\left(x_{j}\right)\right)$

Loss function

- The L_{V} has the minimum value for $q_{i}=q_{\text {min }}+\epsilon \forall i$
- To enforce one condensation point per object, and none for background or noise vertices, the following additional loss term L_{β} is introduced:

$$
L_{\beta}=\frac{1}{K} \sum_{k}\left(1-\beta_{\alpha k}\right)+s_{B} \frac{1}{N_{B}} \sum_{i}^{N} n_{i} \beta_{i},
$$

s_{B} : hyperparameter describing the background suppression strength
K : Maximum value of objects
N_{B} : Number of background
n_{i} : Noise tag (if noise, it equals 1.)

- The loss terms are also weighted by $\operatorname{arctanh}^{2} \beta_{i}$:

$$
\begin{aligned}
L_{p} & =\frac{1}{\sum_{i=1}^{N} \xi_{i}} \cdot \sum_{i=1}^{N} L_{i}\left(t_{i}, p_{i}\right) \xi_{i}, \text { with } \\
\xi_{i} & =\left(1-n_{i}\right) \operatorname{arctanh}^{2} \beta_{i} .
\end{aligned}
$$

p_{i} : Featutes
$L_{i}\left(t_{i}, p_{i}\right)$: Loss term (Difference between true labels and outputs of network)

Loss function

- If high efficiency instead of high purity is required:

$$
L_{p}^{\prime}=\frac{1}{K} \sum_{k=1}^{K} \frac{1}{\sum_{i=1}^{N} M_{i k} \xi_{i}} \cdot \sum_{i=1}^{N} M_{i k} L_{i}\left(t_{i}, p_{i}\right) \xi_{i} .
$$

- In practice, individual loss terms might need to be weighted differently:

$$
L=L_{p}+s_{C}\left(L_{\beta}+L_{V}\right)
$$

