Recent results from LHC (focusing on Higgs) and synergy to Higgs Factories

25 November 2022, ILC-Japan Physics WG meeting Shigeki Hirose (University of Tsukuba)

LHC and ILC

- ILC can realise precision measurements, but needs extension to reach higher energy processes
- LHC can cover wider range (depending on parton distribution), but large theory uncertainties and QCD background in general

Interplay between (HL-)LHC and ILC is important!

Recent Higgs results

- Both experiments achieved the inclusive precision of 6%!
 - Entering the second generation (μ, c)
- Understanding of experimental / theoretical uncertainties are being more important

Recent developments of $H \rightarrow c \bar{c}$

- Similar analysis technique with $H \rightarrow b\overline{b}$
 - Use the VH production; existence of V suppresses QCD background
- Result: *μ* < 26 obs. (< 31 exp.)
 - Significantly improved from the previous publication: μ < 110 (150)
 - 3.9x more statistics
 - Better performance DNN-based c-tagging algorithm
 - Better *c*-tagging calibration, allowing to significantly reduce systematics
- CMS: μ < 14.4 obs. (μ < 7.60 exp.) <u>CMS, arXiv:2205.05550 [accepted by PRL]</u>
 - Good sensitivity thanks to the boosted SR

ATLAS, PRL 120 (2018) 211802

Differential measurement

- Differential measurements are more important
 - Simplified Template Cross
 Section (STXS) framework
 allows combinations from
 various measurements
 - Important to measure with as many different channels as possible
 - Precision of ~20-100% is achieved

5/15

- Genuine differential measurements beyond the STXS framework is also being attempted
 - $\ H \to \gamma \gamma$
 - $H \to ZZ^* \to 4\ell$
 - $H \rightarrow WW^*$
 - $H \rightarrow \tau \tau$

ATLAS-CONF-2021-053

<u>Presented at Higgs 2022</u> (CONF note coming soon)

Work In Progress

<u>CMS, arXiv:2208.12279</u> <u>CMS-PAS-HIG-21-009</u> <u>CMS, JHEP 03 (2021) 003</u>

CMS, PRL 128 (2022) 081805

Higgs self-coupling

- All of the main channels are now (almost) complete
 - Significant improvements w.r.t. the previous publication!
 - From $\sigma/\sigma_{\rm SM}$ < 10 to < 2.9 (in expectations) with 3.9x more statistics
- CMS also shows good results

Other Higgs properties

• Total decay width can be determined using off-shell $H^* \rightarrow ZZ$

$$\mu_{\text{off-shell}}/\mu_{\text{on-shell}} = \Gamma_H/\Gamma_H^{\text{SM}}$$

- Mass: $H \rightarrow \gamma \gamma$ being dominated by systematics while $H \rightarrow ZZ^* \rightarrow 4\ell$ still statistically limited
- CP-odd/even mixing on Higgs couplings being probed

Projections to HL-LHC

- Realistic prospects for HL-LHC is made based on the latest analysis techniques at Run 2
 - *Not* full simulations with upgraded detector geometries
 - Some assumptions in estimates of systematics
 - Various new updates in the past months for Snowmass 2022 process

ATL-PHYS-PUB-2022-018

2nd generation fermions at HL-LHC

- Included better tracking resolution and wider muon acceptance of the upgraded detector
- Direct $H \rightarrow c\bar{c}$ search included for the first time

	ATLAS	CMS	
κ_{μ}	7.7% (7.7%)	3.5% (5.0%)	→ ATLAS result not updated since YR18
$ \kappa_c $	< 3.0	< 3.4	

9/15

10/15

Higgs self-coupling at HL-LHC

		SENT				
	2018 [1]	Latest (2022)		2018 [1]	Latest (2022)	
$HH \rightarrow b \overline{b} b \overline{b}$	0.61σ	1.0σ [4]	$HH \rightarrow b\overline{b}b\overline{b}$	0.95σ		
$HH \rightarrow b \overline{b} \tau \tau$	2.1σ	2.8 σ[2]	$HH \rightarrow b\bar{b}\tau\tau$	1.4σ		
$HH \rightarrow b \overline{b} \gamma \gamma$	2.0σ	2.2 σ [3]	$HH \to b\bar{b}\gamma\gamma$	1.8σ	2.16 σ [2]	
All combined	3.0σ	3.4 σ [4]	$HH \rightarrow b\overline{b}WW^*$	0.56σ		
[1] 4		0019.052	$HH \rightarrow b\overline{b}ZZ^*$	0.37σ		
[1] <u>A</u> [2] <u>A</u>	TL-PHYS-PUB-2	<u>021-044</u>	All combined	2.6σ		
[3] <u>A</u> [4] <u>A</u>	TL-PHYS-PUB-2 TL-PHYS-PUB-2	022-001 022-053	[1] <u>CMS-FTR-18-019</u> [2] <u>CMS-FTR-21-004</u>			

- Three main channels $(b\overline{b}b\overline{b}, b\overline{b}\tau\tau, b\overline{b}\gamma\gamma)$ lead sensitivities
 - 4.0σ (0.52 < κ_{λ} < 1.5) was predicted for 3000 fb⁻¹ in YR18
- Various improvements developed in full Run-2 analyses
 - N.B. current nominal luminosity for HL-LHC is 4000 fb⁻¹
 (Observation of the *HH* production probably achievable at HL-LHC?)

CDF II, Science 376, 170 (2022)

EW precision: *W* mass

- ATLAS measured m_W at 7 TeV
 - Less advantageous w.r.t. Tevatron due to pp collisions and higher \sqrt{s}
 - $-\chi^2$ fit of the templates with changing shape as a function of m_W
 - Update with improved methods is work in progress
- Low pileup data were taken during Run 2
 - Need low pileup data to not degrade resolutions
 - 636 pb⁻¹ data were collected at pileup \sim 2

EW precision: top mass

- Latest CMS results with the lepton+jet channel
 - Kinematic fit using the m_t = $m_{\bar{t}}$ to improve resolution
 - Five-dimensional fit to constrain systematics

 m_t = 171.77 \pm 0.04 (stat) \pm 0.38 GeV

PDG: 172.69 ± 0.30 GeV

 Good precision is achieved; the value moved slightly towards Absolute Stability

EW SUSY

- There is a gap at $m(\tilde{\ell}) m(\tilde{\chi}_1^0) \sim 40$ GeV due to similarity to SM WW; but this phase space is motivated by the $(g 2)_{\mu}$ anomaly
- A dedicated analysis to tackle this region <u>ATLAS, arXiv:2209.13935</u>
- Higgsino searches
 - Intermediate region below $m(\tilde{\chi}_1^{\pm}) m(\tilde{\chi}_1^0) \sim 1$ GeV but still large enough to not be long-lived $\tilde{\chi}_1^{\pm}$

Synergy with ILC

Higgs properties

- Coupling: better precision expected in ILC if BR > O(1%)
 - HL-LHC has an advantage for $H \rightarrow \mu\mu$ and $H \rightarrow \gamma\gamma$ and $t\bar{t}H$ (w.r.t. ILC250)
- Self-coupling: HL-LHC important until ILC500 is realised
- Decay width: will be determined with ~20% precision at HL-LHC; will be drastically improved at ILC500 where WW fusion is usable (with model-independent method)
- CP properties: HL-LHC and ILC may complement measurements each other? Good statistics in HL-LHC, while cleaner environment in ILC

<u>350 GeV</u>

250 GeV

Top properties

- Top mass: precise measurements (~100 MeV or less?) by the $t\bar{t}$ threshold scan
 - HL-LHC prospect is ~200 MeV
- Kinematic properties: top quark dynamics can be probed using enormous $t\bar{t}$ events at HL-LHC: O(10⁹) with 4000 fb⁻¹

<u>500 GeV</u>

>1 TeV

Heavy BSM searches

- Strong production: high statistics at HL-LHC may enable us to discover them (if within the range of HL-LHC)
- **EW production:** ILC>1000 may be possible to access O(TeV) BSM resonances, such as 1 TeV Higgsino?
 - ILC350-500 can already open new phase space w.r.t. HL-LHC?

N.B. various other topics (SM precision measurements, light resonance searches, ...) are of course important!

Summary

- Diverse physics programs are ongoing at LHC
 - The topics shown today are only tiny part of them
 - High mass resonance searches (heavy Higgs, SUSY, LQ, ...) are of course important (though not well covered today)
 - − Statistics will be ~tripled by the end of Run 3 (139 fb⁻¹ \rightarrow 400 fb⁻¹)
 - \rightarrow Physics at Run 3 must be very interesting!
- Projections to HL-LHC
 - Not only statistics, but also analysis techniques which are being improved
 - The prospect of σ_{HH} significance at HL-LHC was improved by >10% in four years
- Interplay with ILC will be more important at the HL-LHC era
 - Some processes are already being limited by theory systematics
 \rightarrow ILC may reach better precisions than HL-LHC
 - If we see deviations from expectations, LHC can *directly* tackle possible BSM resonances

16/15

• eff(c) = 27%

Hcc: systematics

ATLAS, PRL 120 (2018) 211802

Source	$\sigma/\sigma_{\rm tot}$
Statistical	49%
Floating Z + jets normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

ATLAS-PHYS-PUB-2021-039

Source of uncertainty	$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$	
Total	15.3	0.24	0.48	
Statistical	10.0	0.11	0.32	
Systematic		11.5	0.21	0.36
Statistical uncertainties				
Signal normalisation		7.8	0.05	0.23
Other normalisations		5.1	0.09	0.22
Theoretical and modellin	ng uncertainties			
$VH(\rightarrow c\bar{c})$	2.1	< 0.01	0.01	
Z + jets		7.0	0.05	0.17
Top quark		3.9	0.13	0.09
W+ jets		3.0	0.05	0.11
Diboson		1.0	0.09	0.12
$VH(\rightarrow b\bar{b})$		0.8	< 0.01	0.01
Multi-jet		1.0	0.03	0.02
Simulation samples size	4.2	0.09	0.13	
Experimental uncertainti	ies			
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.2	0.01	0.01
Pile-up and luminosity		0.3	0.01	0.01
	<i>c</i> -jets	1.6	0.05	0.16
Element of the	<i>b</i> -jets	1.1	0.01	0.03
Flavour tagging	light-jets	0.4	0.01	0.06
	τ -jets	0.3	0.01	0.04
Truth flavour to aging	ΔR correction	3.3	0.03	0.10
frum-navour tagging	Residual non-closure	1.7	0.03	0.10

VHcc: ATLAS vs CMS

- CMS shows a better result
 - Boosted region plays a good job; probably thanks to good S/N though expected signals are small

STXS/differential

ATLAS, Nature 607, 52 (2022)

ATLAS, ATLAS-CONF-2021-053

Parameter normalised to SM value

Contributions to κλ

HH search at CMS

22/15

$\blacksquare \text{ Off-shell } H \rightarrow ZZ$

• 4 lepton channel: use optimal observables

25/15

