Measuring the tau polarisation at the ILC

Keita Yumino, Daniel Jeans

ilt

KEK, SOKENDAI

1st general meeting of ILC-Japan Physics Working Group

Motivation

At the ILC, forward-backward asymmetry $A_{F B}=\frac{3}{4} A_{e} \cdot A_{f}$ can be measured Thanks to ILC's polarised beams, A_{e} can be measured $\Rightarrow A_{f}$ can be extracted from A_{FB}

By measuring A_{FB} precisely and looking for deviations from SM predictions, it is possible to search for new physics, such as heavy gauge boson Z^{\prime}

We can also directly measure A_{τ} by using tau polarisation $P(\tau)$

$$
\frac{d P(\tau)}{d \cos \theta}=\frac{3}{8} A_{\tau}\left(1+\cos ^{2} \theta\right)+\frac{3}{4}\left(\frac{A_{e}-P_{e}}{1-A_{e} P_{e}}\right) \cos \theta
$$

[The aim of this study The reconstruction of tau spin orientation ("Polarimeter") in order to measure polarisation to investigate new physics.

Tau jet reconstruction

1:Look for two seed direction to build tau jet candidates

2:Make two cones

second seed : the highest momentum charged PFO
(separated from the first seed by at least $\pi / 2$ in the $x-y$ plane ($\delta \varphi)$)

Tau decay mode selection efficiency
Select tau decay mode by looking at $N_{\text {charged }}, N_{\gamma}, m_{\gamma \gamma}, m_{\pi \gamma}$
$\begin{cases}\tau \rightarrow \pi \nu_{\tau} & \\ \tau \rightarrow \rho \nu_{\tau}, & \rho \rightarrow \pi \pi^{0} \quad \text { single pi decay } \\ \tau \rightarrow a_{1} \nu_{\tau} \tau & \begin{array}{l}a_{1} \rightarrow \pi \pi^{0} \pi^{0}- \\ \\ a_{1} \rightarrow 3 \pi \\ \text { rho decay }\end{array} \\ \text { single-prong a1 decay }\end{cases}$

IsolatedLeptonTaggingProcessor was used for leptonic decay

$$
\begin{aligned}
\tau & \rightarrow e \bar{\nu}_{e} \nu_{\tau} \\
\tau & \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau}
\end{aligned}
$$

Reconstructed decay mode
This efficiency is not very good \rightarrow try to improve them using TMVA (on going)

Polarimeter

Reconstruction of tau polarisation $P(\tau)$ depends on tau decay mode.
Polarimeter vectors of $\tau \rightarrow \pi \nu$ in τ rest frame
polarimeter vector

$$
h\left(\tau^{ \pm} \rightarrow \pi^{ \pm} \nu\right) \propto p_{\pi^{ \pm}}
$$

Polarimeter vectors of $\tau \rightarrow \rho \nu$ in τ rest frame

$$
h\left(\tau^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \nu\right) \propto m_{\tau}\left(E_{\pi^{ \pm}}-E_{\pi^{0}}\right)\left(p_{\pi^{ \pm}}-p_{\pi^{0}}\right)+\frac{1}{2}\left(p_{\pi^{ \pm}}+p_{\pi^{0}}^{1}\right)^{2} p_{\nu}
$$

"Polarimeter"

The cosine of the angle this polarimeter vector makes to the tau flight direction

$$
\begin{aligned}
\text { only look at } & \tau \rightarrow \pi \nu(\mathrm{BR} \sim 10 \%) \\
& \tau \rightarrow \rho \nu(\mathrm{BR} \sim 26 \%)
\end{aligned} \quad \text { in this talk }
$$

Previous study

Extract polarimeter without using neutrino information
"Approximate" polarimeters based only on the momenta of visible tau decay products "Optimal" polarimeters including the neutrino component

mean statistical error on tau polarisation
$\left(E_{\mathrm{CM}}=500 \mathrm{GeV}, \mathscr{L}=1.6 \mathrm{ab}^{-1}\right) \quad 0.30 \%$

0.40 \%

In this talk: reconstruct neutrino momentum \rightarrow optimal polarimeters

Simulation setup

- Signal event sample with $100 \% e_{L}^{-} e_{R}^{+}$beam polarisations were generated using WHIZARD ver 2.8.5.
- The decay of the polarised tau was done using TAUOLA.
- MC truth information was used.

τ reconstruction method

-Assume

- Two taus are produced along the beam line $(x=y=0)$,
- Two taus are back-to-back in x-y plane,
- any ISR photons have negligible p_{T}
- Charged particle travels approximately in a straight line near IP.

τ reconstruction method

- Two tau momenta lie in a plane containing z-axis, at some azimuthal angle ϕ

τ reconstruction method

For a plane with azimuthal angle ϕ, the intersection of trajectories with this plane can be calculated.

τ reconstruction method

then choice of $z_{\text {IP }}$ gives direction of tau momenta

τ reconstruction method

Constraints

- 4-momentum conservation
- tau mass $\times 2$
- Decay point on trajectory $\times 2$
assume 1 ISR photon collinear with beam

For choice of $z_{I P}, \phi$
we can calculate tau 4-momenta P_{τ}
the invariant mass of the missing (neutrino) momentum for each tau can be calculated

$$
P_{\nu}=P_{\tau}-P_{v i s}
$$

We choose the values of z and ϕ which result in neutrino masses closest to zero

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 1 solution

find local minima in $\sum\left|m_{\nu_{i}}^{2}\right|$

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 2 solutions

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 3 solutions

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 4 solutions

find local minima in

Method efficiency

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Summary

- Full reconstruction of $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$using impact parameter was investigated.
- For events with $m_{\tau \tau} \sim 250 \mathrm{GeV}$, new method efficiency is $>80 \%$

$$
m_{\tau \tau} \sim 91 \mathrm{GeV} \quad \sim 75 \%
$$

- Polarimeters were reconstructed in the $\tau \rightarrow \pi \nu$ and $\tau \rightarrow \rho \nu$ decay modes.
- Reasonable agreement between MC truth polarimeter and the one from "Impact parameter method" for both $\tau \rightarrow \pi \nu$ and $\tau \rightarrow \rho \nu$ decay were found.

Future plan

- Quantify the precision with which the tau polarisation can be measured at ILC-250.
- Investigate search for new physics by using the tau polarisation.

Effect of ISR photon on method efficiency

We assumed that ISR photons are collinear with the beams, Efficiency improves as cut is tightened.

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

MC linked PFO

Polarimeter

$\tau \rightarrow \pi \nu \quad$ Impact parameter method vs MC

$\tau \rightarrow \rho \nu \quad$ Impact parameter method vs MC \quad eLpR(100\%)

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

MC linked PFO
Polarimeter
$\tau \rightarrow \pi \nu \quad$ Impact parameter method vs MC

$\tau \rightarrow \rho \nu \quad$ Impact parameter method vs MC $\quad \operatorname{eLpR}(100 \%)$

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Polarimeter

$\tau \rightarrow \pi \nu$ Impact parameter method vs MC \quad eLpR(

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Polarimeter

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

FSR event

Method efficiency

Impact parameter method efficiency

Method efficiency

Method efficiency

Impact parameter method efficiency

Impact parameter method efficiency

Before FSR
After FSR

example event with 4 solutions

We have up to four solutions

- Tau polarisation precision measurement
- Jackknife method
- Pseudo-experiment

Use all solutions as they are. (not good) Several entries / event \rightarrow not independent

Take the average of all solutions.
If each tau has several solutions, apply equal weight

$$
\text { weight }=\frac{1}{n_{\tau} \cdot n_{\text {sol }}}
$$

Tau decay mode selection

$$
500 \mathrm{GeV}
$$

Selected 1-prong tau candidates in signal events

$$
\epsilon_{i j}=\frac{N_{j}}{\Sigma N_{i j}}
$$

\%	unknown	pi	rho	a11p	a13p	e	mu
pi	1.80	82.3	12.1	0.39	0.37	1.84	1.15
rho	4.99	1.01	79.9	7.40	0.96	5.15	0.58
a11p	8.47	0.87	16.8	64.3	2.16	6.78	0.66
a13p	10.4	2.48	1.87	0.43	84.8	0.05	0.05
e	2.08	0.04	0.38	0.11	0.02	97.1	0.27
mu	0.98	0.64	0.10	0.00	0.02	0.67	97.6
other	21.2	9.95	14.4	13.5	39.0	1.57	0.37

\longrightarrow reconstructed tau decay mode

This efficiency is not very good, so we try to improve them using TMVA

The $2.0 \mathrm{ab}^{-1}$ of integrated luminosity foreseen at ILC-250

beam polarisation	$e_{\mathrm{L} 80}^{-} e_{\mathrm{R} 30}^{+}(-,+)$	$e_{\mathrm{R} 80}^{-} e_{\mathrm{L} 30}^{+}(-,+)$
integrated luminosity $\left[\mathrm{fb}{ }^{-1}\right]$	900	900
$e^{-}(\mathrm{L}, \mathrm{R})$	$(90 \%, 10 \%)$	$(10 \%, 90 \%)$
$e^{+}(\mathrm{L}, \mathrm{R})$	$(35 \%, 65 \%)$	$(65 \%, 35 \%)$

$$
\begin{aligned}
\sigma_{L R} & =21214.001 \mathrm{fb} \\
\sigma_{R L} & =16363.043 \mathrm{fb} \\
N_{\mathrm{LR}} & =1.2 \times 10^{7} \\
N_{\mathrm{RL}} & =9.3 \times 10^{6}
\end{aligned}
$$

$\left[\begin{array}{r}\text { radiative return }\left(91 \pm 5\left[\mathrm{GeV} / \mathrm{c}^{2}\right]\right) \\ \mathrm{N}=N_{\mathrm{LR}} \times 34.6 \%+N_{R L} \times 29.6 \% \\ \mathrm{~N}=6.8 \times 10^{6}\end{array}\right]$
$\left[\right.$ High mass $\tau-\tau\left(245 \pm 5\left[\mathrm{GeV} / \mathrm{c}^{2}\right]\right)$

$$
\begin{array}{r}
\mathrm{N}=N_{\mathrm{LR}} \times 22.9 \%+N_{R L} \times 24.3 \% \\
\mathrm{~N}=4.9 \times 10^{6}
\end{array}
$$

Tau decay mode selection

Select tau decay mode by counting the number of reconstructed photons

Number of charged particle inside cone $=1$

Tau decay mode selection

Select tau decay mode by counting the number of reconstructed photons
Number of charged particle inside cone $=1$

Number of photon $=1$
invariant mass of $(\gamma \gamma$ system $)>0.2 \mathrm{GeV} \quad \rightarrow \quad$ rho decay

$$
\tau \rightarrow \rho \nu_{\tau}
$$

Number of photon $=1$
invariant mass of $(\gamma \gamma$ system $)<0.2 \mathrm{GeV} \quad \rightarrow \quad$ single pion decay
similar procedure number of photon $>{ }^{6} 6$

$$
\tau \rightarrow \pi \nu_{\tau}
$$

Tau decay mode selection

Select tau decay mode by counting the number of reconstructed photons
Number of charged particle inside cone $=1$

$$
\text { rho decay } \tau \rightarrow \rho \nu_{\tau}
$$

Number of photon $=2$
invariant mass of (2 -photon system + photon) $>1.1 \mathrm{and}$ V invariant mass of pion $<0.4 \mathrm{GeV}$

Number of photon $=2$
invariant mass of (pion + photon) $<1.1 \mathrm{GeV}$ invariant mass of pion $<0.4 \mathrm{GeV}$

Number of photon $=2$
invariant mass of (pion + photon) $>1.1 \mathrm{GeV}$ invariant mass of pion> 0.4 GeV
single-prong al decay $\tau \rightarrow$ single-prong a_{1}
Number of photon $=2$
and invariant mass of (pion + photon) $<1.1 \mathrm{GeV}$ invariant mass of pion $>0.4 \mathrm{GeV}$

Tau decay mode selection

Select tau decay mode by counting the number of reconstructed photons
rho decay
Number of photon $=2$
invariant mass of (pion + photon $)>1.1 \mathrm{GeV}$ invariant mass of pion $<0.4 \mathrm{GeV}$
and

Number of photon $=2$
invariant mass of (pion + photon) $<1.1 \mathrm{GeV}$ invariant mass of pion $<0.4 \mathrm{GeV}$

Number of charged particle inside cone $=1$

Number of photon $=3$
invariant mass of (pion + photon) $>1.1 \mathrm{GeV}$ invariant mass of pion> 0.4 GeV
and
Number of photon $=2$
invariant mass of (pion + photon) $<1.1 \mathrm{GeV}$
invariant mass of pion $>0.4 \mathrm{GeV}$

