arXiv:1912.08403

arXiv:2203.07668

Measuring the tau polarisation at the ILC

Keita Yumino, Daniel Jeans

KEK, SOKENDAI

Motivation

At the ILC, forward-backward asymmetry $A_{FB} = \frac{3}{4} A_e \cdot A_f$ can be measured

Thanks to ILC's polarised beams, A_e can be measured $\Rightarrow A_f$ can be extracted from A_{FB}

By measuring A_{FB} precisely and looking for deviations from SM predictions, it is possible to search for new physics, such as heavy gauge boson Z'

We can also directly measure A_{τ} by using tau polarisation $P(\tau)$

$$\frac{dP(\tau)}{d\cos\theta} = \frac{3}{8}A_{\tau}(1+\cos^2\theta) + \frac{3}{4}\left(\frac{A_e - P_e}{1 - A_e P_e}\right)\cos\theta$$

The aim of this study -

The reconstruction of tau spin orientation ("Polarimeter") in order to measure polarisation to investigate new physics.

Tau jet reconstruction

1:Look for two seed direction to build tau jet candidates

: the highest momentum charged PFO first seed

second seed: the highest momentum charged PFO (separated from the first seed by at least $\pi/2$ in the x-y plane $(\delta \varphi)$)

2:Make two cones

second seed

 $\beta = 0.4 \text{ rad}$

Tau decay mode selection efficiency

Select tau decay mode by looking at $N_{charged}$, N_{γ} , $m_{\gamma\gamma}$, $m_{\pi\gamma}$

Reconstructed decay mode

This efficiency is not very good

→try to improve them using TMVA (on going)

Polarimeter

Reconstruction of tau polarisation $P(\tau)$ depends on tau decay mode.

Polarimeter vectors of $\tau \to \pi \nu$ in τ rest frame

$$h(\tau^{\pm} \to \pi^{\pm} \nu) \propto p_{\pi^{\pm}}$$

Polarimeter vectors of $\tau \to \rho \nu$ in τ rest frame

$$h(\tau^{\pm} \to \pi^{\pm} \pi^{0} \nu) \propto m_{\tau} (E_{\pi^{\pm}} - E_{\pi^{0}}) (p_{\pi^{\pm}} - p_{\pi^{0}}) + \frac{1}{2} (p_{\pi^{\pm}} + p_{\pi^{0}}^{-1})^{2} p_{\nu}$$

"Polarimeter"

The cosine of the angle this polarimeter vector makes to the tau flight direction

only look at
$$\tau \to \pi \nu$$
 (BR ~ 10 %) in this talk $\tau \to \rho \nu$ (BR ~ 26 %)

Previous study

Extract polarimeter without using neutrino information

"Approximate" polarimeters based only on the momenta of visible tau decay products

"Optimal" polarimeters including the neutrino component

In this talk: reconstruct neutrino momentum \rightarrow optimal polarimeters

Simulation setup

- Signal event sample with $100 \% e_L^- e_R^+$ beam polarisations were generated using WHIZARD ver 2.8.5.
- The decay of the polarised tau was done using TAUOLA.
- MC truth information was used.

- Primary interaction occurs along the beam line(x = y = 0),
- Two taus are back-to-back in x-y plane,
- Charged particle travels approximately in a straight line near IP.
- \circ Two tau momenta lie in a plane containing z-axis, at some azimuthal angle ϕ

For a plane with azimuthal angle ϕ , the intersection of trajectories with this plane can be calculated.

then choice of z_{IP} gives direction of tau momenta

 \Rightarrow How can we choose ϕ , z_{IP} ?

Constraints

- 4-momentum conservation
- tau mass $\times 2$
- Decay point on trajectory × 2

For choice of z_{IP} , ϕ we can calculate tau 4-momenta P_{τ}

the invariant mass of the missing (neutrino) momentum for each tau can be calculated

$$P_{\nu} = P_{\tau} - P_{vis}$$

We choose the values of z and ϕ which result in neutrino masses closest to zero

We choose the values of z and ϕ which result in neutrino masses closest to zero

example event with 1 solution

We choose the values of z and ϕ which result in neutrino masses closest to zero

example event with 2 solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero

example event with 3 solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero

example event with 4 solutions

Method worked: at least 1 solution is found

Impact parameter method efficiency is > 80% for events with $m_{\tau\tau} \sim 250$ GeV

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Summary

- Full reconstruction of $e^+e^- \to \tau^+\tau^-$ using impact parameter was investigated.
- For events with $m_{\tau\tau} \sim 250$ GeV, new method efficiency is $> 80\,\%$ $m_{\tau\tau} \sim 91$ GeV $\sim 75\,\%$
- Polarimeters were reconstructed in the $\tau \to \pi \nu$ and $\tau \to \rho \nu$ decay modes.
- Reasonable agreement between MC truth polarimeter and the one from "Impact parameter method" for both $\tau \to \pi \nu$ and $\tau \to \rho \nu$ decay were found.

Future plan

- Quantify the precision with which the tau polarisation can be measured at ILC-250.
- Investigate search for new physics by using the tau polarisation.

Effect of ISR photon on method efficiency

We assumed that ISR photons are collinear with the beams, Efficiency improves as cut is tightened.

22

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

example event with 4 solutions

We have up to four solutions

- Tau polarisation precision measurement
 - Jackknife method
 - Pseudo-experiment

Use all solutions as they are. (not good)
Several entries / event → not independent

Take the average of all solutions.

If each tau has several solutions, apply equal weight

weight =
$$\frac{1}{n_{\tau} \cdot n_{sol}}$$

500 GeV

Selected 1-prong tau candidates in signal events

$$\epsilon_{ij} = \frac{N_j}{\sum N_{ij}}$$

	%	unknown	pi	rho	al1p	a13p	e	mu	
MC truth	pi	1.80	82.3	12.1	0.39	0.37	1.84	1.15	
	rho	4.99	1.01	79.9	7.40	0.96	5.15	0.58	
	a11p	8.47	0.87	16.8	64.3	2.16	6.78	0.66	
	a13p	10.4	2.48	1.87	0.43	84.8	0.05	0.05	
	e	2.08	0.04	0.38	0.11	0.02	97.1	0.27	
	mu	0.98	0.64	0.10	0.00	0.02	0.67	97.6	
	other	21.2	9.95	14.4	13.5	39.0	1.57	0.37] ↓

reconstructed tau decay mode

This efficiency is not very good, so we try to improve them using TMVA

The 2.0ab⁻¹ of integrated luminosity foreseen at ILC-250

beam polarisation	$e_{\mathrm{L}80}^{-}e_{\mathrm{R}30}^{+}\left(-,+\right)$	$e_{ m R80}^{-}e_{ m L30}^{+}$ (- , +)		
integrated luminosity [fb ⁻¹]	900	900		
e ⁻ (L, R)	(90 %, 10 %)	(10 %, 90 %)		
e ⁺ (L, R)	(35 %, 65 %)	(65 %, 35 %)		

$$\sigma_{LR} = 21214.001 \text{ fb}$$

$$\sigma_{RL} = 16363.043 \text{ fb}$$

$$N_{\rm LR} = 1.2 \times 10^7$$

$$N_{\rm RL} = 9.3 \times 10^6$$

radiative return $(91 \pm 5[\text{GeV/c}^2])$

$$N = N_{LR} \times 34.6\% + N_{RL} \times 29.6\%$$

$$N = 6.8 \times 10^6$$

- High mass τ - τ (245 ± 5[GeV/c²]) -

$$N = N_{LR} \times 22.9\% + N_{RL} \times 24.3\%$$

$$N = 4.9 \times 10^6$$

Select tau decay mode by counting the number of reconstructed photons

Number of charged particle inside cone =1

Number of photon = 0 \rightarrow single pion decay $au \rightarrow \pi
u_{ au}$

Select tau decay mode by counting the number of reconstructed photons

Number of charged particle inside cone =1

Number of photon = 1 invariant mass of ($\gamma\gamma$ system) > 0.2 GeV \rightarrow rho decay $\tau \rightarrow \rho \nu_{\tau}$

Number of photon = 1 invariant mass of $(\gamma \gamma \text{ system}) < 0.2 \text{ GeV} \rightarrow \text{single pion decay}$ similar procedure number of photon > 16 $\tau \rightarrow \pi \nu_{\tau}$

Select tau decay mode by counting the number of reconstructed photons

Select tau decay mode by counting the number of reconstructed photons

rho decay

Number of photon = 2invariant mass of (pion + photon) > 1.1 GeVinvariant mass of pion < 0.4 GeV

and

Number of photon = 2invariant mass of (pion + photon) < 1.1 GeV invariant mass of pion < 0.4 GeV

Number of charged particle inside cone =1

single-prong a1 decay

 $\tau \rightarrow \text{single-prong } a_1$

Number of photon = 3invariant mass of (pion + photon) > 1.1 GeV invariant mass of pion> 0.4 GeV

Number of photon = 2invariant mass of (pion + photon) < 1.1 GeV and invariant mass of pion > 0.4 GeV