

İİL



# Calorimeter Clustering with Gravnet

KYUSHU UNIV.<sup>A</sup>, OSAKA UNIV. RCNP <sup>B</sup>, OSAKA UNIV. IDS<sup>C</sup>, KYUSHU INSTITUTE OF TECHNOLOGY <sup>D</sup> SHUSAKU TSUMURA <sup>A</sup>, TAIKAN SUEHARA <sup>A</sup>, KIYOTOMO KAWAGOE <sup>A</sup>, HAJIME NAGAHARA <sup>B,C</sup>, YUTA NAKASHIMA <sup>B,C</sup>, NORIKO TAKEMURA<sup>C,D</sup>

1st General Meeting of ILC-Japan Physics WG

2022/11/25 1

# ILD / SIW ECAL



- Electromagnetic calorimeter (ECAL): Detects position, momentum, and energy of gamma rays with high granularity
   → Higher accuracy of particle identification: PFA
- ECAL equips a lot of channels (~10<sup>8</sup>) to identify each particle.
- Sandwich structure with 30 alternating layers of Si detection layer and W absorption layer.
- W-absorbing layer: Electromagnetic shower is induced when electrons and gamma rays are incident.  $\rightarrow \sim 24 X_0$  in total
- Feature: Moliere radius is small enough to separate each particle

## PARTICLE FLOW ALGORITHM (PFA)

- A method to obtain higher jet energy resolution by reconstructing the particle trajectory for each type of particle in the jet.
- Charged particles: Tracker
- Photons : ECAL
- Neutral hadrons : HCAL
- Resolution of a calorimeter for a single particle : Perfect PFA:  $\sim 20\% / \sqrt{E(GeV)}$ PandoraPFA :  $\sim 30\% / \sqrt{E(GeV)}$ w/o PFA : 50 - 60% /  $\sqrt{E(GeV)}$





#### APPLICATION OF DEEP LEARNING TO PFA

- Current PFA algorithm : PandoraPFA
  The pattern recognition based on the manual cutting
- The main problem: Confusion effect
  → The particles impinge too close to each other
- We may achieve better accuracy by considering the hidden and complicated relationships among the hit information
- Aim to further improve performance by using deep learning technique.



#### DEEP LEARNING

Fully Connected Layer

- One of the most basic structures in deep learning
- Consists of an input layer, a hidden layer, and an output layer
- More expressive network can be built by increasing the number of layers → Performance can be improved by inserting Batch Normalization, etc. in between
   Graph Neural Network
- Network is constructed as a graph consisting of nodes (points) and edges (lines)
- Not only can it learn the features of materials with a graph-like structure, but it can also be used in many ways, such as expressing the relationship between features as a graph.





### GRAVNET

• Input Data :  $V \times F_{IN}$ 

- V : Number of hits for each detector
- $F_{IN}$ : Number of the features for each hit
- S : Set of coordinates in some learned representation space
- $F_{LR}$  : learned representation of the vertex features
- Input data of initial dimension  $V \times F_{IN}$  is converted into a graph.
- The coordinates of the graph is updated by the learning of the network.





1st General Meeting of ILC-Japan Physics WG

### GRAVNET

- The contribution of each point is bigger depending on the distance between the points
- The output is calculated for each point based on the contribution
- At last, the outputs  $(\widetilde{F_{LR}})$  are concatenated with the initial inputs and previous outputs and pass the FC layer.
- The  $F_{OUT}$  output carries collective information from each vertex and its surrounding.





### SHOWER CLUSTERING

- Input: feature values of hits in the calorimeter e.g., position, energy, time, etc.
- Output:  $\beta$ /coordinates in the representation coordinate for each hit (explained in later slides)
- Deep Learning Architecture
  - Developed for a CMS detector that has a lot of separated channels for PFA





8

2022/11/25

-475-450-425-400 2 (cm) -375-350-325 -200 -100

150

1st General Meeting of ILC-Japan Physics WG

### **Object Condensation**

- A loss function technique to recognition for multi-object
- Get the output from GravNet as β and output whether the hit seems to be a representative point of the particle (0 < β < 1)</li>
- Employs two terms as Loss terms to improve cluster and background identification

$$L = L_V + L_\beta$$

- L<sub>V</sub>: The closer the hit is to a particle with high β and belonging to the same particle, the smaller it is, and the more it belongs to a different particle, the larger it is.
  → Equivalent to the attractive and repulsive forces acting on an electric charge
- $L_{\beta}$ : Converge  $\beta$  to 1 for only one of each particle corresponding to a true cluster The remaining  $\beta$  works its way closer to 0

1st General Meeting of ILC-Japan Physics WG

2022/11/25 9



#### SIMULATION DATA

- ILD 500 GeV Simulation Data
- $e^+e^- \rightarrow Z^* \rightarrow 2q$  events
- Clustering showers obtain hit information (Energy , x, y, z) measured in Ecal / Hcal section











10

#### Data profile

- Data at Ecal and Hcal hits.
- Number of events : 1600

#### Hit position(one event)



#### From upper side





Hit energy distribution (one event)

2022/11/25

11

#### Results

- Loss functions of both training and training data are decreasing
  - $\rightarrow$  Learning works correctly.











#### Before training

After 70 epochs

#### SUMMARY

- Graph Neural Networks are applied to the PFA and shower clustering algorithms in the ILC analysis framework.
- Sixteen hundreds events of Hit data measured with Ecal /Hcal are used as simulation data.
- The training results showed a decrease in the loss function for both the training and evaluation data.

#### Plan :

- We are planning to prepare simpler input data to evaluate the performance of GravNet more efficiently.
  - Data includes two shower events generated from only the two MC particles
- Evaluation of the network as

 $Accuracy = \frac{\text{hits in each cluster predicted correctly}}{\text{True hits in each cluster}}$ 

1st General Meeting of ILC-Japan Physics WG

2022/11/25 13