HLRF 072706

Agenda

- Vancouver Summary
- Plenary proposals for ACD for cost reduction R&D
- -Single Tunnel Impact
- -Future work
 - ACD proposals
 - ♦Costs
 - ♦ R&D Report

HLRF 072706

Vancouver Summary

- HLRF Costs deemed completed in session with Cost Engineers
- Did we use Risk Table correctly?
- Found missing reference in Distribution spread sheet, 15% low number
 - Large costs from Asia partly due to taking only 15% discount for full quantities
- Damping Ring estimates not shown by DR group; communications problem
 - Cost secrecy hinders communications
- In Plenary HLRF summary suggested formalizing ACD for klystron & distribution
- Garbincius requests response on impact of single tunnel
 Preliminary done, August 15th for more studied response

ACD Breakout Discussion

S. Fukuda on 36 beam MBK klystron

- 50KV design would not be cheaper than 10MW tube, but has advantages for modulator
- 50kV easier than 120kV
- Modification of Marx from 120 to 50 kV would have advantages but would not save parts (power is constant, lower V, higher I)
- Marx already takes credit for these savings
- Sheet Beam (SBK) claims potential 2X cost reduction, smaller size and weight (no solenoid)

Distribution

- New design seeks to eliminate cavity circulators, go to simpler phase shifter than 3-stub tuner
- Needs extensive modeling, fault analysis, prototyping

 Urged R&D funds for SBK, Distribution on basis of 2X potential cost savings

1-Tunnel Impact

 Attached breakout discussion preliminary results sent to Garbincius
 More complete response requested by August 15th.

HLRF Single Tunnel Options

HLRF Breakouts Vancouver GDE Meeting Friday July 21 2006 R. Larsen for HLRF Team

3 Scenarios +1

 All BCD in single tunnel, no alcoves

 2. BCD Mod, LLRF in single tunnel alcoves every 5 km.

♦ 3. Marx in tunnel

♦ 4. All ACD Big 3 in single tunnel

1. All BCD in 1- Tunnel No Alcoves

Assumptions

- Radiation damage from dark current is not a risk or can be controlled by shielding.
- Tunnel can be sized to accommodate all components with acceptable clearances and working spaces
- Klystrons, power supplies, charger, modulator and LLRF
 - Design with HA so most units will last for mission time of 9 months.
 - Can be accomplished providing High Availability architectures used throughout
 - Significant cost penalty to make Bouncer Mod into HA.
 - Minimal impact using Marx (if works as planned)

1-Tunnel Pros and Cons

Pros

- Eliminates service tunnel and penetrations, long runs of WG & cables (large saving)
- Shortens LLRF & cryo-module cable plant (small saving)

1-Tunnel Pros & Cons 2

- Introduces additional heat, vibration components into tunnel – will require isolation. (Compromise performance)
- Decreases availability so amelioration in form of stronger HA design needed (Design cost increase)
- Larger main tunnel required; will offset (possibly large) fraction of service tunnel savings
- Installation more constrained, will take longer
- Limited access during operations requires "firedrill" forced downtime maintenance mode instead of orderly replacement at any time.

1-Tunnel Summary

- Can be done but will incur offsetting costs:
 - -Larger main tunnel
 - More HA design and some increased unit cost
 - Additional heat, vibration in main tunnel requiring engineering solutions
 - More stress on personnel due to high tunnel temperatures
 - Standby maintenance mode of operation instead of routine orderly replacement

2. BCD Modulators in 1-Tunnel Alcoves

Pros

Modulators accessible in case of failure; repair without stopping machine

Cons

- Additional alcove costs
- Long modulator cable runs introduce major expense, availability penalty
- Cable plant generates heat losses, poses tunnel fire safety hazards

BCD in 1-Tunnel Alcoves Summary

- Technical and cost compromises c.f.
 1-Tunnel
- Better for servicing if modulator reliability a concern, but increased cost due to alcoves, HV cable plant

3. Marx in 1-Tunnel no Alcoves

 HA design makes possible run for mission time of 9 months with minimum intervention.

 Reduced space, weight, cost advantages

 Card-modular design minimizes MTTR

4. All ACD Big 3 in Single Tunnel

Marx ACD

- Reduce size, weight, cost; eliminate oil, pulse transformer; reduce costs ~2X
- Sheet Beam Klystron ACD
 - Reduce size, weight, space, high voltage; eliminate solenoid & power, require less space in tunnel
 - Potential cost reduction ~2X
- Distribution ACD
 - Design complete 12 m cryo-system without circulators, 3-stub tuners
 - Potential cost reduction ~2X

 Overall HLRF cost reduction => incremental cost of 2nd tunnel (Snowmass)

General Comments 1 Tunnel

Radiation/Activation

 Components such as klystrons and modulators may become activated over time in which case repair or remanufacture can become very costly or impractical

Cooling Water Temperature - Klystrons

- Stacking klystron cooling circuits poses single point failure for multiple klystrons as well as difficulties for operation, maintenance
- Should keep single loops that can be isolated, possibly at reduced flow and higher delta T

Rack Cooling

- Rack electronics should be kept on separate loop with maximum inlet temp of 25C for controlled 40C air temperature in closed water cooled rack
- Minimal cost gain, many technical disadvantages to aircooled racks