

γ's Near Jet Axis ECal Performance

Bayley Burke, Jim Brau University of Oregon

Jet and γ 's Selections & Parameters

- Standard SiD Model
- $E_{cm} = 250 \text{ GeV}$
- $e^+e^- \rightarrow Zh$, Higgs \rightarrow Invisible, $Z \rightarrow$ qqbar events only
- $R_{ij} = 1 i \cdot j = 1 \cos(\theta_{ij})$
 - \sim i, j are the unit vectors of particles or jets
 - R_{ip} = 1 $\cos(\theta_{ip})$, where θ_{ip} is the angle between the jet axis and the constituent particle
- Jets
 - > 5GeV
 - 2 jet events, both jets in barrel, sum of both jets > 100 GeV, each jet > 35% total event energy
 - Selects 9,333 out of 65,742 qqbar events
- Particles matching and selecting Monte Carlo γ 's & PFO's
 - \circ R_{pp} < .00005
 - (R between Monte Carlo particle and PFO particle)

$$|\mathsf{E}_{\mathsf{mct}} - \mathsf{E}_{\mathsf{pfo}}| < \mathsf{E}_{\mathsf{mct}}^{(1/2)}$$

- Removing extreme outliers
- $\circ \gamma$ only

> 5 GeV γ 's distribution relative to jet axis

> 5 GeV $\overline{\gamma}$'s

Profile plots showing mean and standard deviation of gamma energy measurement

Resolution of gammas degrades near jet axis, as expected (systematic positive offset)

3 - 5 GeV γ 's distribution relative to jet axis

3-5 GeV γ 's

Profile plots showing mean and standard deviation of gamma energy measurement

Resolution of gammas degrades near jet axis, as expected (systematic positive offset)

Next Steps

- Investigating how MAPS can improve these results
 - Should perform better in busy inner-jet environment
 - Better spatial resolution \rightarrow better able to disentangle close-together particles
 - Improve measurement close to jet axis