Result of Tau event selection

	Tau Event	2f signal	2f BG	4f BG
Cut order	Original	776,143(100.00%)	4,254,790(100.00%)	10,184,055(100.00%)
	Jet clustering	736,410(94.88%)	3,541,240(83.23%)	7,080,720(69.52%)
	Opening angle	716,410(92.30%)	1,089,018(25.60%)	1,737,498(17.06%)
	Energy	699,889(90.18%)	207,841(4.90%)	1,254,822(12.32%)

Very large number of about twice as much as 2f sig

so, I consider decreasing the number of 4f BG events by cuts using the impact parameter D0, Z0 and D0 significance, Z0 significance.

- I think cut the event from -3 to 3 in D0 significance would reduce the BG without reducing the 2f sig too much.
 - I will do the result plot after cutting by impact parameter later.

Impact parameter: D0, Z0

• Impact parameter: D0, Z0

Figure 1: The projection of a helix segment in the xy plane is a part of an arc with centre P^c and radius R. The direction of the particle is shown with the arrow at the arc. All track parameters are given relative to the reference point P^r .

Figure 2: The projection of a helix in the sz plane is a straight line (see Eq. 10). The variable s at a point P is the arc length in the xy plane from P^0 to P. This also implies that s = 0, if $z = z_0$.

Since tau has a finite lifetime (ctau = 87 um), particles generated by tau decay fly a short distance from the IP. -> D0, Z0 will be large.

backup

Tau event

Signal events and BG events

No clustering & cuts : Original

 $l^- + l^+ Energy$ highest energy

mass

Tau jet clustering

• Tau jet clustering Use TauFinder/TaJetClustering.cc

2 jets' highest energy for all particles in tau jet

For charged particles in tau jet

Opening angle cut

Energy cut

• Energy cut: 2 jets' highest energy

• $l^- Energy + l^+ Energy$

