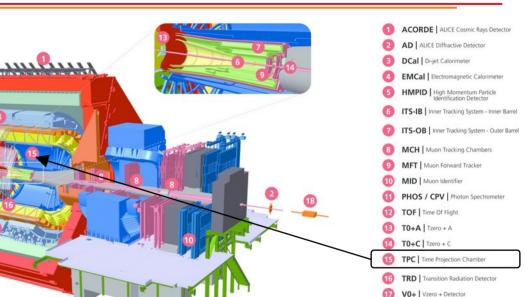


Space-Point Calibration in the ALICE TPC

Jens Wiechula

LCTPC Collaboration meeting 18.01.2023

- The ALICE and its TPC technical overview
- Space-point distortion contributions
- Distortion corrections

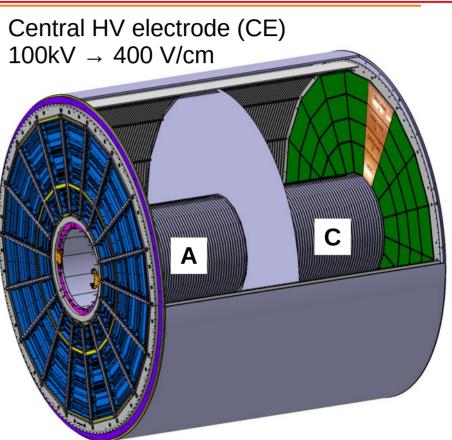


ALICE and its TPC Technical overview

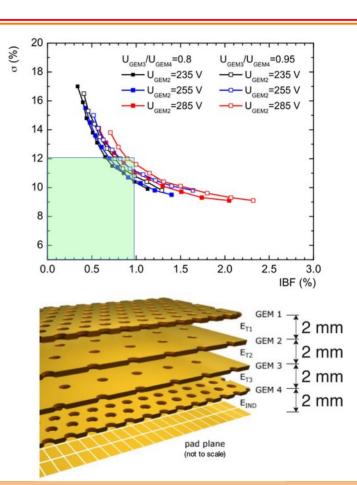
The ALICE Detector system

- Dedicated heavy-ion experiment at CERN LHC
- Running conditions
 - 50kHz Pb-Pb
 - Up to 5MHz pp, default 0.5-1MHz
- Main detector for particle identification and track reconstruction
 - Large-volume TPC

ZDC Zero Degree Calorimeter



The ALICE TPC

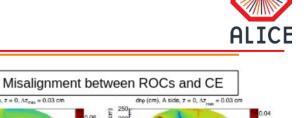

ALICE

- Large volume TPC (~90m³)
- Gas: Ne-CO₂-N₂ (90-10-5)
- Drift voltage: 100kV, 94µs drift time
- Two read-out halves, divided by central HV electrode
- 18 readout sectors in azimuthal direction
- Each sector divided into an inner and out readout chamber (IROC / OROC)

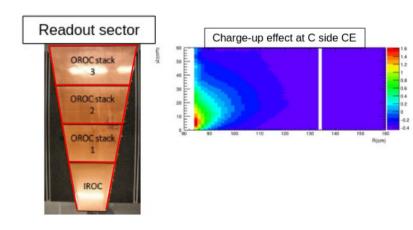
Readout technology

- Readout technology: Gas Electron Multipliers (GEMs)
 - Continuous readout
 - Good local energy resolution
 - Moderate Ion back flow
 - High operational stability
- Optimized operational point
 - Pitch layout S-LP-LP-S
 - HV settings

Jens Wiechula - ALICE TPC space-point calibration


Space-point distortion contributions

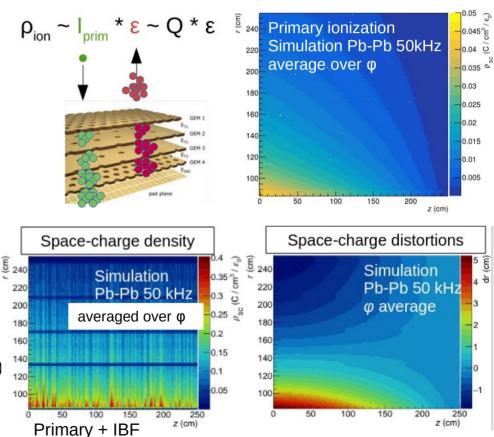
- Static distortions
- Charge-up effect
- Space-charge


Space-point distortions

Static distortions and charge-up

- Static distortions
 - Misalignment between readout chambers and central electrode
 - Misalignment of nominal B- and E-fields due to imperfections
 - Constant in time for given detector configuration
- Charge-up effects •
 - Non-conducting surfaces of GEM frames
 - Inner field cage close to the central electrode on the C side
 - \rightarrow Time constants O(mins), scaling with load

0.200.150.100.50 0

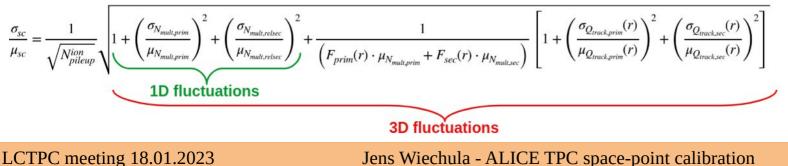

dr (cm) A side, z = 0, Az = 0.03 cm

200 150 100 50 0 50 100 150 200 25

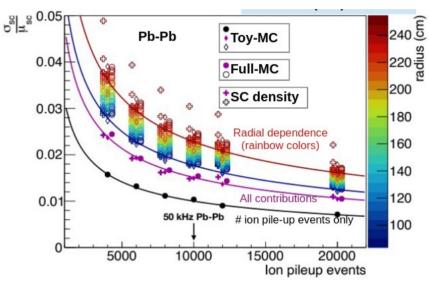
Space-point distortion contributions

Space-charge

- Ions from amplification stage drift back to the drift volume (~1%)
 - Back drifting ions per primary electron: $\epsilon = IBF * gain (2000) = 20$
- Slow ion drift (~200ms for full drift)
 - Ions from large number of events piling up (~10000 events @ Pb-Pb 50kHz)
 - Large space charge
 - Large average distortions (O(5-10cm))
 - Intrinsic resolution at inner wall $\sim 200 \mu m$
- Realistic simulation
 - full detector description (Geant4)
 - Measured relative gain map
 - Measured relative IBF map (with production HV settings)
 - Caveat: linear electron and ion transport

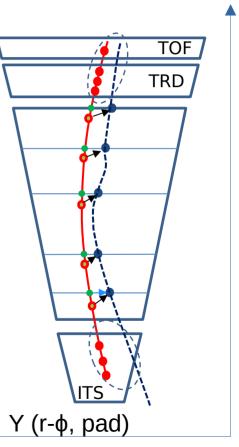


LCTPC meeting 18.01.2023


Jens Wiechula - ALICE TPC space-point calibration

Space-point distortion contributions

- Fluctuations driven by
 - Ion backflow x gain = ε
 - Number of ion pile-up events within one full ion drift time
 - Particle flux (primary, secondary particles) from collisions
 - Ionization deposited by single particles
- Relative space-charge density fluctuations σ_{sc}/μ_{sc} of ~2 % at 50 kHz Pb-Pb
 - Distortion fluctuations of O(mm cm) in r and $r\phi$
 - Relevant time scales: 5 10 ms
- Direct measure for density fluctuation required


Distortion corrections

- Long term average
- Short-term average corrections
- Fluctuation corrections

Distortion corrections

Long term average – apparent distortions

- Main input: direct measure of distortions
- Reconstruct TPC tracks with relaxed tolerances (applying "default distortion map" if available)
- Match to ITS and TRD/TOF with relaxed tolerances
- Refit ITS-TRD-TOF part and interpolate to TPC as a reference of the true track position at every pad-row
- Collect δY , δZ differences between **distorted clusters** and **reference** points in sub-volumes (voxels) of TPC

pad-rows

(radius

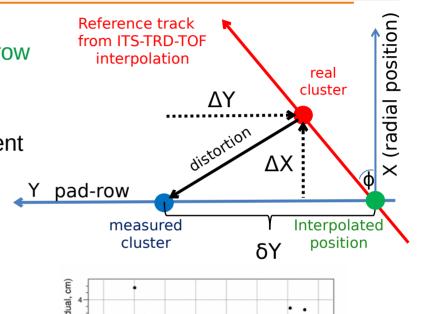
×

LCTPC meeting 18.01.2023

Jens Wiechula - ALICE TPC space-point calibration

13

Distortion corrections

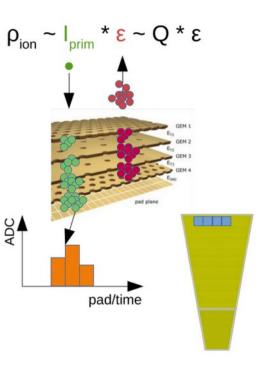

Long term average – real distortions

- We measure Y distortion δY as a difference between • reference (ITS-TRD/TOF) track intersection with pad-row and measured cluster
 - \rightarrow Strong bias due to the X distortions
- Same TPC region (voxel) is probed by tracks at different • inclinations ϕ wrt pad row
- Deconvolute real ΔX and ΔY distortions using δY • dependence on $tq(\phi)$ then extract Z distortion

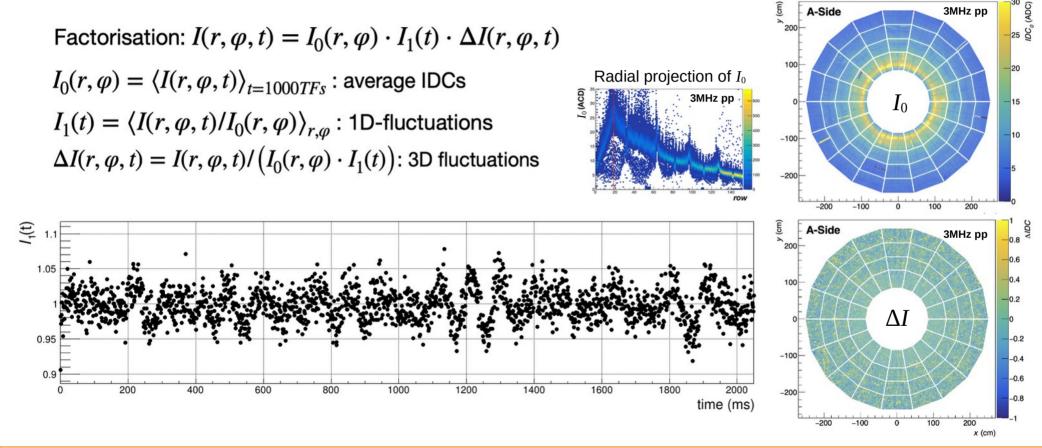
 $\delta Y = \Delta Y - \Delta X tq(\varphi)$

 $\delta Z = \Delta Z - \Delta X tq(\lambda)$

- Keep residual information for each data taking window • (time frame - TF = 10ms)
- Integration over longer time intervals ~1 min (Pb-Pb) and • <~10 min (pp): "long term average map" $M_{L,ref}$



LS Pol1 fit


LCTPC meeting 18.01.2023

- Space-charge distortion calibration Fluctuation measure – Integrated Digital Currents
- Main input: direct measure of fluctuations
- Space-charge density related to ADC currents via IBF (ϵ = gain * IBF)
 - Assume gain and IBF constant on short time scales
- Integrated Digital Currents IDCs
 - Integrated ADC values over 1ms inside the readout uni (CRU), pad-by-pad, injected in data stream
 - Factorisation and averaging to minimize data volume at maximum information content

 $IDC = Q \sim I_{prim} * gain$

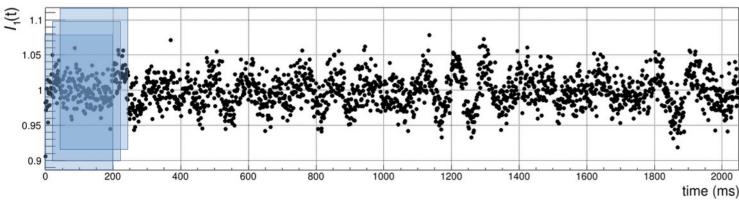
Space-charge distortion calibration Integrated Digital Currents – Factorisation

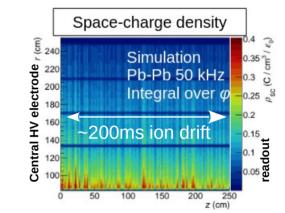
3MHz pp

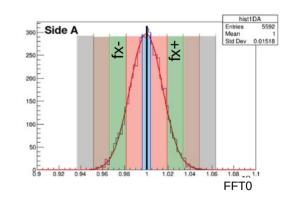
(E)

A-Side

Jens Wiechula - ALICE TPC space-point calibration

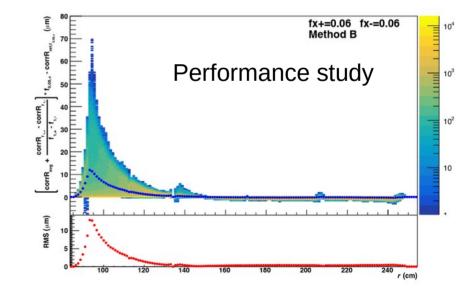

16

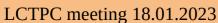

LCTPC meeting 18.01.2023


Jens Wiechula - ALICE TPC space-point calibration

Space-charge distortion calibration Integrated Digital Currents – FFT + 1D classification

- Do FFT decomposition of time intervals reflecting on ion drift (~200ms)
 - Classification of 1D (z) fluctuations
 - Ion drift time required!
- Perform this for "time frame" of 10ms (relevant time scale for fluctuations = data taking window)
- Select time frames of certain classes (e.g. window in FFT0 class) and build the average map for the selected time frames: $M_{L,fx+-}$

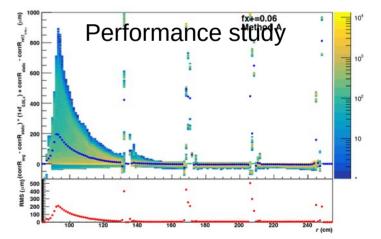




Space-charge distortion calibration

Reconstruction procedure

- Perform scaling using local derivatives
- $M_{\text{corr}} = M_{L,ref} + \Delta M_{L,fx^{+-}} / \Delta \text{FFTO}(I_{1,\text{ref}}) * \text{FFTO}(I_{1,\text{now}})$
 - Alternatively ML using more FFT coefficients
- *M*_{*L*,*ref*}: long-term average map (or offset from linear fit)
- ΔM_{L,fx+-} / ΔFFT0(I_{1,ref}): map from local derivatives



Space-charge distortion calibration

Reconstruction procedure – simplistic approach

- Perform scaling using absolute map
- $M_{\text{corr}} = M_{\text{static}} + (M_{L,ref} M_{\text{static}}) * L_{\text{now}} / L_{\text{ref}}$
- *M*_{static}: long-term average map, measured at low luminosity
- *M*_{*L,ref*}: long-term average map measured at high (reference) luminosity
- Caveat: different scaling of static, charge-up and space-charge distortions!

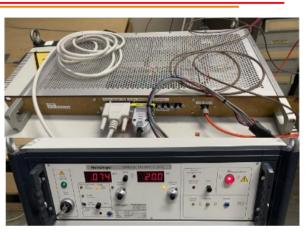
Space-charge distortion calibration Further plans

- Distortion fluctuations corrections
 - Step 0: Linear regression of fluctuation corrections as a function of derivatives and coefficients for ~10 FFT coefficients, 1D = delta of IDCs
 - Step 1: Use of ML (Random Forest, BDT) to correct residuals wrt step 0
 - Step 2: Use of CNN to further correct for the 3D case
 - Will depend on the size of the fluctuations and on the performance after Step 0 and Step 1

Summary

- Different types of distortions present in the TPC (static, charge-up, space-chare)
 - Different scaling over time and detector load to be taken into account
- Large distortions due to space-charge expected O(5-10cm)
 - Correction down to intrinsic tracking precision envisaged O(few 100um)
- Two main ingredients for distortion corrections
 - Direct measure of distortions via interpolation from external detector points
 - Measure of fluctuations using continuously integrated digital currents on the pad plane (IDCs)
- Different procedures foreseen for corrections
 - Scaling of absolute distortion map
 - Scaling of local derivative distortion map
 - Linear regression / ML using derivative map and 1D FFT coefficients of IDCs
 - ML using NDim IDC fluctuation information

Backup



- The upgrade of the ALICE TPC with GEMs and continuous readout arXiv:2012.09518v2
- Reconstruction in ALICE and calibration of TPC space-charge distortions in Run 3 arXiv:2109.12000v2
- Space-point calibration of the ALICE TPC with track residuals arXiv:2003.03174
- Upgrade of the ALICE Time Projection Chamber (Technical design report) CERN Document Server

Space-charge distortion calibration

- Required for FFT of $I_1(t)$ (1D IDCs)
- Hardware solution
 - Fast readout of CE power supply
 - Correlation currents from CE PS with
 - 1D IDCs, or
 - CE laser signal, or
 - Beam dump sigature
- Software solution
 - Uses numerical derivatives of measured residuals wrt. 1D IDC FFT coefficients (same concept as advanced lumi correction)
 - Conceptually proven in toy studies

