Overview of physics applications of time-of-flight particle ID at a future Higgs factory

ILD Analysis/Software Meeting 23 November 2022

Bohdan Dudar bohdan.dudar@desy.de

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Reminder: time-of-flight particle identification

Our understanding has significantly improved over the last two years: <u>track length impact on mass</u>

Winfried A. Mitaroff

DESY. | Physics applications for TOF pID | Bohdan Dudar

Our understanding has significantly improved over the last two years: <u>time resolution impact on sep. power</u>

Our understanding has significantly improved over the last two years: <u>realistic implementations</u>

Combining multiple time measurements we can improve TOF resolution: $\sigma_{\text{TOF}} \sim \frac{\sigma_{\text{hit}}}{\sqrt{n}}$

- > However, we used simplified digitization: MC truth hit time \rightarrow smear with a Gaussian
- Further communication with calorimeter people is needed for realistic implementation of ECAL hit signal processing

The goal of this presentation: <u>overview of physics applications</u>

Goal #1

Share accumulated experience of two years: potential physics applications of TOF pID we have studied so far

Goal #2

Collect feedback from expert audience: what have we missed?

DESY. | Physics applications for TOF pID | Bohdan Dudar

Contribution to the Kaon mass measurement

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

DESY. | Physics applications for TOF pID | Bohdan Dudar

Contribution to the Kaon mass measurement

Status on September 2020 by Uli Einhaus


```
\Delta TOF \approx 17 \text{ ps} \text{ (per particle)}
```

PDG: $m_K = 493.677 \pm 0.013$ MeV

DESY. | Physics applications for TOF pID | Bohdan Dudar

Contribution to the Kaon mass measurement

Status on April 2022 by Uli Einhaus

..... no dE/dx

..... no dE/dx

..... no dE/dx

3.5

з

entum cutoff (GeV)

 $\Delta TOF \approx 17 \text{ ps}$ (per particle)

 $\Delta TOF \approx 17 \text{ ps}$ (per particle)

PDG: $m_K = 493.677 \pm 0.013$ MeV

DESY. | Physics applications for TOF pID | Bohdan Dudar

Contribution to the Kaon mass measurement: systematic bias

Contribution to the Kaon mass measurement: <u>systematic bias</u>

Status on September 2020 by Uli Einhaus

true

Unfolding of the true Kaon mass:

- requires good understanding of the behaviour of
 - track length and its uncert.
 - time resolution and its uncert.
 - momentum and its uncert.
- \succ realistic simulation of time resolution

Doable, but requires a quite involved study and significant time investment

Momentum distribution of charged hadrons in $e^+e^- \rightarrow ZH@250$ GeV

> Majority of $\pi^{\pm}/K^{\pm}/p$ are produced at low-momenta, which is covered by TOF pID

Improve tracks with TOF pID:

fit tracks with true mass instead of default $\pi^{\scriptscriptstyle\pm}$ mass

DESY. | Physics applications for TOF pID | Bohdan Dudar

Track fit with a proper mass (default $m_{\pi\pm}$) hypothesis using pID

Study by Yasser (PhD thesis)

protons curvature pull

kaons curvature pull normalized #tracks / 0.1 00 00 00 00 fit with pion mass fit with true mass Entries 9888 Entries 9888 χ^2 / ndf 76.09 / 58 γ^2 / ndf 36.4 / 51 Constant 0.02408 ±0.00034 Constant 0.02754 ±0.00039 0.7004 ± 0.0189 0.1751 ± 0.0165 Mean Mean 1.537 ±0.019 Sigma 1.358 ±0.017 ILD full simulation K[±], |p̃| = 1 GeV, θ = 85° 0.01 -10 10 5 0 $(\Omega^{\mathsf{REC}} - \Omega^{\mathsf{TRUE}}) /$ σ_{Ω} 23 November 2022

Track fit with a proper mass (default $m_{\pi\pm}$) hypothesis using pID

Study by Yasser (PhD thesis)

protons d₀ pull

DESY. | Physics applications for TOF pID | Bohdan Dudar

kaons d₀ pull

Track fit with a proper mass (default $m_{\pi\pm}$) hypothesis using pID

- \succ Very well established positive effect:
 - better track parameters
 - and their uncertainties

but ...

- \succ Ideal \rightarrow TOF pID transition still has to be made
- \blacktriangleright Relevant only in the limited momentum (< 2 GeV)
- Definitely nice for reconstruction, but how does it translate to high-level physics studies?

We are using LCFIPlus for vertex reconstruction

DESY. | Physics applications for TOF pID | Bohdan Dudar

Good track selection

DESY. | Physics applications for TOF pID | Bohdan Dudar

Matching tracks and Vo check

Track pairing cuts in VertexFinderSuehara

DESY. | Physics applications for TOF pID | Bohdan Dudar

Vertex fit of the pair of tracks

DESY. | Physics applications for TOF pID | Bohdan Dudar

Testing 3+ tracks per vertex scenario

DESY. | Physics applications for TOF pID | Bohdan Dudar

Slightly better vertex position reconstruction ✓

- $\sum_{a=1}^{m} \sum_{b=1}^{a} \sum_{a=1}^{a} \sum_{b=1}^{a} \sum_{a=1}^{b} \sum_{a$
 - Slightly better vertex position reconstruction
 - Slightly better vertex position uncertainties

very similar buts ...

- \blacktriangleright Ideal \rightarrow TOF pID transition still has to be made
- Relevant only for vertices with at least one $\pi^{\pm}/K^{\pm}/p$ (p < 1 GeV)
- Definitely nice for reconstruction, but how does it translate to high-level physics studies?

More realistic track parameter uncertainties → Less missed/fake vertices? (direct impact on flavour tag!)

DESY. | Physics applications for TOF pID | Bohdan Dudar

Using LCFIPlus

More realistic track parameter uncertainties → Less missed/fake vertices? (direct impact on flavour tag!)

LCFIPlus secondary vertexing cut workflow in Standard Reconstruction						AVF = OFF
Good track selection for BuildUpVertex algorithm						
$\boxed{0 < d_0 < 10} \left[0 < z_0 - z_{IP} < 20\right] \left[0 < \sigma_{ab} < 0.1\right] \left[0 < \sigma_{ab} < 0.1\right] \left[p_T > 0.1\right] \left[\text{not from IP}\right]$						
$\left(\begin{array}{c} 0 < \frac{ \dot{s}_{ti} }{\sigma_{st}} < 10^{300} \end{array} \right) \qquad \left(\begin{array}{c} 0 < \frac{ \dot{s}_{ti} }{\sigma_{st}} < 10^{300} \end{array} \right) \qquad \left(\begin{array}{c} \ast < \sqrt{\frac{ \dot{s}_{ti} }{\sigma_{st}} + \frac{ \dot{s}_{ti} }{\sigma_{st}} +$						
$\label{eq:constraint} \underbrace{\left(\text{VTX +FTD hils} \geq 0 \right) - \text{OR}}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \right) - \text{OR}}_{\text{OR}} \underbrace{\left(\text{FTD hils} \geq 10^4 \text{ and } p_T > 999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OR}} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 9999999 \right)}_{\text{OTX hils} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 99999999 \right)}_{\text{OTX hils} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p_T > 99999999 \right)}_{\text{OTX hils} \underbrace{\left(\text{VTX hils} \geq 10^4 \text{ and } p$						
	500 ×	<10 ³	kaons (p < 1 GeV)			Entries
	500					=
	450					
	400			•		
	350					
	300			1		=
	250		default			=
	200		refit			
	150					
	100					
	50					
	0 =			<u> </u>		
	-	no cu	d ₀ cu	z ₀ cu	p _T cn	prim.vt
lar	23 November 2022					

DESY. | Physics applications for TOF pID | Bohdan Dudar

Vertex with Kaon (π mass fit)

More realistic track parameter uncertainties → Less missed/fake vertices? (direct impact on flavour tag!)

2nd vertices with kaons (< 1 GeV), no d0/z0 error cuts

More realistic track parameter uncertainties → Less missed/fake vertices? (direct impact on flavour tag!)

2nd vertices with kaons (< 1 GeV), no d0/z0 error cuts

Vertex with Kaon (π mass fit)

More realistic track parameter uncertainties → Less missed/fake vertices? (direct impact on flavour tag!)

2nd vertices with kaons (< 1 GeV), no d0/z0 error cuts

More realistic track parameter uncertainties → Less missed/fake vertices? (direct impact on flavour tag!)

2nd vertices with kaons (< 1 GeV), no d0/z0 error cuts

More realistic track parameter uncertainties → Less missed/fake vertices? (direct impact on flavour tag!)

 ➤ Larger track parameter uncertainties → looser cut on vertex fit (doesn't matter if it is more realistic, its just smaller χ²)
 ➤ With the current LCFIPlus algorithm we don't get "better" results we just get different results.

Looking into the future:

- If we will have pID based vertex fit we might achive improved vertex reconstruction using TOF pID. But this requires tedious and detailed development
- At the moment, few cutting-edge DNN flavour tags are in development (Mareike, Taikan). Might also benefit from pID

Higgs studies: $H \rightarrow ss$

Study by Matthew Basso, Valentina Cairo, et.al. [2203.07535]

Including PID < 10 GeV: AUC: $0.523 \rightarrow 0.630$

Including TOF pID (< 5 GeV): AUC: 0.523 \rightarrow 0.577

 ➤ TOF pID might bring slight enhancement, but definitely is not a game-changer here.
 ➤ H → ss heavily relies on pID at high momenta

(c) Strange vs. light, using s-jet score

DESY. | Physics applications for TOF pID | Bohdan Dudar

Higgs studies: $H \rightarrow gg$

➢ Potential TOF use: tag H → gg?

> H \rightarrow gg has larger production of low-momentum K[±] compared to other decay modes

Rare B_s decays at FCC/CEPC

Study by Shanzhen Chen (<u>CEPC2021</u>): Impact of π^{\pm}/K^{\pm} pID information studied with B_(s)⁰->hh

- So far study assumed no backgrounds at all very preliminary
 Very rare decays → relevant only at TeraZ → FCC-ee/CEPC
- Momentum distribution of K[±] at TeraZ? (TOF vs dN/dx) pID impact

Measuring hadrons yield for generator tuning?

- Most π[±]/K[±]/p are produced in the momentum range covered by TOF
- Use TOF to improve precision measurement of π[±]/K[±]/p yields for generator tuning?
- Many generators tuning still rely on LEP data
- Momentum spectrum at Z-pole?

Summary

Potentially few applications for TOF pID:

 \succ kaon mass \rightarrow achievable, requires involved study

 \blacktriangleright track reconstruction \rightarrow no clear transition to physics

 \blacktriangleright Vertex reconstruction \rightarrow requires involved study

 \blacktriangleright Higgs studies (H \rightarrow gg) \rightarrow requires involved study

Flavour physics \rightarrow not clear so far

 \blacktriangleright Generator tuning \rightarrow not clear so far

but...

 \succ TOF doesn't have "a smoking gun" use case so far

> dE/dx in the ILD already covers a good momentum range

Invest more into TOF detailed developments for ILD?

Any follow up ideas from the audience?

BACK UP: kaon production from different decay modes

BACK UP: kaon production from different decay modes

Back up: new track length results for the barrel

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

05 October 2022

Back up: momentum spectrum of pions/kaons/protons

05 October 2022

Back up: momentum spectrum of pions/kaons/protons

Back up: momentum spectrum of pions/kaons/protons

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

05 October 2022

Back up: refit impact on track parameters

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

05 October 2022

Back up: My definition of a true^{*} (reconstructable) vertex

Particle (Hadron) has a **true**^{*} (reconstructable) vertex if:

- Hadron MCParticle has the reconstructed track and origin at a point further than 3 µm from the IP.
- True* vertex must have >1 tracks coming from 3 µm proximity (requirement of being reconstructable in principle even with ideal [3µm] precision)
- P.S. I didn't do any requirements on opposite track signs (+- not required)

Back up: Classification of particles based on vertex info

Iterate over K/p with the reconstructed track

(**) Reconstructed vertex = particle is attached to any vertex by LCFIPlus no any spacial constrains

Back up: Classification of particles based on vertex info

Note¹: so this classification of particles, not vertices

Note²: This means, for each "vertex" I will have 2+ entries in the histogram. Which is not the problem, as most of the vertices consist of only 2 tracks. And I think I limit my plots only for vertices with 2 tracks

Note³: I don't require any spacial agreement, but looking at the pull position distribution, it is not necessary \rightarrow position agrees

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

05 October 2022