

ASICs for DRD6

Christophe de LA TAILLE

Organization for Micro-Electronics desiGn and Applications

- Develop readout ASIC family for DRD6 prototype characterization
 - Inspired from CALICE SKIROC/SPIROC/HARDROC/MICROROC family
 - Targeting future experiments as mentionned in ICFA document (EIC, FCC, ILC, CEPC...)
 - Addressing embedded electronics and detector/electronics coexistence + joint optimization
 - Detector specific front-end but common backend
 - \Rightarrow allows common DAQ and facilitates combined testbeam
- Start from HGCROC / HKROC : Si and SiPM
 - Reduce power from 15 mW/ch to few mW/ch
 - Allows better granularity or LAr operation
 - Extend to LAr (cryogenic operation) and MCPs (PID)
 - Remove HL-LHC-specific digital part and provide flexible auto-triggered data payload
 - Several improvements foreseen in the VFE and digitization parts

ASICs produced and installed on detectors

mega

HKROC : starting chip

- HKROC is 36 channels: 12 PMTs with High, Medium and Low gain
 - □ Or 36 PMTs with one gain
 - $\hfill\square$ Charge measurement with 10 bit ADC
 - □ Time measurement with 25 ps binning
 - □ Readout with high speed links (1,28 Gb/s)
 - □ Hit rate ~400-1000 kHz/ch in average
 - Up to 20 consecutive events possible
 - □ Low power : 10 mW/ch
 - □ BGA package
 - □ HKROC is a waveform digitizer with auto-trigger

DRD6 proposal

- Collaboration OMEGA + AGH Krakow + CEA Saclay
 - OMEGA : VFE and backend
 - AGH : ADC
 - CEA : TDC
- Prepare MPWs and/or engineering runs to get enough chips for calos
 - Already ~300 k€ for an engineering run in 130 nm
 - First run early 2024 with EICROCs and « DRD6 ROCs »
- Submit to DRD6 to have close interaction with physics performance
 - Embedded electronics and joint FE/detector optimization

Timeline and hardware

Main experimental results with HKROC0 – Charge and Time

□ Measurement with the full chain (analog + digital and reconstruction)

□ Signal auto-triggered with threshold

TDC characterization with **1/6 p.e. threshold**

TDC resolution :

150 ps rms @ 1 p.e

≤ 25 ps rms @ 10 p.e

Main experimental results with HKROC0 - Pile-up

- **O**mega
- □ Measurement with 2 events separated by ~30 ns (full chain: analog, digital and reconstruction)
 - □ Signals auto-triggered (internal prommagble threshold)

Charge reconstruction algorithm of the two peaks

Good linearity of reconstructed pile-up events

We can reconstruct both peaks properly !

mega

The HyperK specifications require the trigger threshold to be set at 1/6 p.e (330 fC)

HKROC 2023 - Kyoto

HKROC0 Charge measurements

The **whole** acquisition **chain** is tested:

The signal is **amplified**, **auto-triggered** and **converted** by the internal **ADC**.

