

Institute of High Energy Physics, Chinese Academy of Sciences

High Granularity Crystal Calorimeter R&D Progress

Baohua Qi On behalf of CEPC Calorimeter Working Group

CALICE Collaboration Meeting at University of Göttingen

March 29-31, 2023

Motivations: new detector for CEPC

- CEPC: future lepton collider at 91-240 GeV energy range
 - Higgs/Z/W bosons, BSM searches, etc.
 - Jet energy resolution of 3-4%@100GeV is required
 - PFA-oriented high-granularity calorimeter
- PFA-oriented detector "CEPC 4th concept": Drift Chamber + ECAL + HCAL
 - Crystal ECAL: intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Scintillating glass HCAL: high density for better boson mass resolution

Talk *Overview of the CEPC Project* by Haijun Yang, CEPC Joint Workshop 2022, 23-25 May

Crystal calorimeter: R&D overview

Hardware development: key questions on design

- New reconstruction software for long bars
- Geometry of barrel ECAL

Crystal module development for future beam tests

Overview of this report: R&D status

R&D of a highly granular crystal ECAL:

- General geometry design of crystal ECAL
 - Key questions on the detector assembly
 - Energy leakage study: geometry optimization
- Reconstruction algorithm dedicated to crystal ECAL
 - Clustering and particle reconstruction algorithm
 - Occupancy of ECAL towers: challenges on reconstruction
- Activities on small-scale crystal module development
 - Performance check with energy resolution
 - Uniformity scan of BGO crystal bars
 - SiPM calibration with optical fiber
 - Mechanical structure and PCB design

- Energy leakage study: geometry optimization
- Avoid cracks pointing to the interaction point

 Larger value of β: fewer projectile cracks, but more gaps

• And other potential designs...

Weizheng Song (IHEP)

Overview of this report: R&D status

R&D of a highly granular crystal ECAL:

- General geometry design of crystal ECAL
 - Key questions on the detector assembly
 - Energy leakage study: geometry optimization
- Reconstruction algorithm dedicated to crystal ECAL
 - Clustering and particle reconstruction algorithm
 - Occupancy of ECAL towers: challenges on reconstruction
- Activities on small-scale crystal module development
 - Performance check with energy resolution
 - Uniformity scan of BGO crystal bars
 - SiPM calibration with optical fiber
 - Mechanical structure and PCB design

Reconstruction algorithm dedicated to crystal ECAL

• Clustering algorithm for long bar crystal ECAL

Consistency between individual clusters and single particles

Inputs for further particle recognition

2023/03/30

Reconstruction algorithm dedicated to crystal ECAL

• Particle reconstruction for long bar crystal ECAL

Yang Zhang (IHEP)

Tracking matching algorithm for crystal ECAL

- Two tracks due to ECAL tower boundary
- Reconstruction flow has already been built
- Ongoing work on hadron...

Reconstruction algorithm dedicated to crystal ECAL

- Occupancy of ECAL towers: challenges on reconstruction
- Hottest tower: the tower with the largest number of particles hitting on
- 4 jets event: $e^+e^- \rightarrow ZH, Z \rightarrow q\bar{q}, H \rightarrow gg$

- Most towers have 0~1 particle hitting on
- Occupancy of these towers can be ignored

- Always have multiple particles hitting on one tower
- Need to deal with the occupancy by algorithm improvement
- Potential performance degradation needs to be understood

Yang Zhang (IHEP)

Overview of this report: R&D status

R&D of a highly granular crystal ECAL:

- General geometry design of crystal ECAL
 - Key questions on the detector assembly
 - Energy leakage study: geometry optimization
- Reconstruction algorithm dedicated to crystal ECAL
 - Clustering and particle reconstruction algorithm ۲
 - Occupancy of ECAL towers: challenges on reconstruction
- Activities on small-scale crystal module development
 - Performance check with energy resolution
 - Uniformity scan of BGO crystal bars
 - SiPM calibration with optical fiber
 - Mechanical structure and PCB design

- $12 \times 12 \times 12$ cm³ BGO modules development
- Motivations: address critical issues at system level
- Beam test studies
 - Energy resolution, shower profiles
 - Validation of simulation and digitization tool
 - Application of the new reconstruction software
- SiPM option: NDL/HPK, 6/10 μ m pixel size, 3 \times 3 mm² sensitive area
- Electronics option: commercial products available, e.g. Citiroc-1A
- Crystal option: BGO crystal (12×2×2 cm³) from SIC-CAS
- Beam test plan: 2 modules serial arrangement

Crystal module

- 36 crystals readout from two sides
- 18 channels per side, 72 channels per module

- Performance check: Geant4 simulation with 1~10 GeV electron
- Saturation considering S14160-3010PS SiPM and Citiroc-1A chip
- 5% (σ = 0.1%) transmittance neutral density filter is used for light attenuation

- SiPM non-linearity should be further calibrated
- Saturation of electronics can be avoided via high dynamic range ASIC
- 5% neutral density filter can mitigate the saturation effect but will introduce additional uncertainty

Digitization: photon statistics, SiPM gain error, ADC error, MIP threshold

- Batch test of SIC-CAS BGO crystal bars
 - 40 crystals with ESR and Al foil wrapping
 - Scan with Cs-137 radioactive source

Response uniformity along bar

• Generally good uniformity along a single bar

Zhikai Chen (IHEP/USC)

- Batch test of SIC-CAS BGO crystal bars
 - 40 crystals with ESR and Al foil wrapping
 - Scan with Cs-137 radioactive source

- Tested point: crystal center
- Response varies among bars: coupling? wrapping?

- Uniformity = (Max Min)/Mean
- Generally uniformity of single bars at 1% level

- SiPM calibration with optical fiber and laser diode
 - Motivation: online single photon calibration for a 72-channel module
 - Collimated laser diode for enough light intensity
 - Light will be guided to SiPMs (NDL EQR15 series) by plastic optical fiber

- Laser should be collimated to fiber ends
- Fibers should be bonded for better light acceptance

- SiPM calibration with optical fiber and laser diode
 - Motivation: online single photon calibration for a 72-channel module
 - Collimated laser diode for enough light intensity
 - Light will be guided by plastic optical fiber to SiPMs (NDL EQR15 series)

- Both SiPMs shows clear photon peaks
- Good consistency between the arbitral selected 2 fiber channels

Zhiyu Zhao (SJTU)

• Mechanical structure and module assembly

- Difficulties on mechanical design
 - Readout from 4 sides, PCB is non-load-bearing and should be decoupled
 - Module assembly is hard since crystals should be placed orthogonally

• PCB layout

CALICE Collaboration Meeting at University of Göttingen

Summary & prospects

R&D of a highly granular crystal ECAL:

- Preliminary geometry design of barrel ECAL
 - Key questions on dead material and assembly
 - Optimization to avoid projectile cracks
- Reconstruction algorithm
 - Clustering and reconstruction workflow
 - First studies on occupancy of ECAL towers
- Activities on small-scale crystal module development
 - Performance check: ND-filter seems necessary
 - Uniformity studies of SIC-CAS BGO crystal bars
 - SiPM calibration through optical fiber
 - Mechanical design status and challenges

- Prospects
 - Ongoing geometry optimization and cooling simulation
 - Algorithm development and validation
 - Crystal module: prepare for latest beam test
 - Mechanical assembly
 - Joint test with fiber calibration system
 - Test on readout electronics
 - ...

PFA performance: Higgs benchmark

- Physics performance
 - Boson mass resolution (BMR) for di-jet events: $ZH (Z \rightarrow \nu\nu, H \rightarrow gg)$
 - Studied with 1 cm³ crystal cubes
 - Significant improvement after Arbor-PFA algorithm optimization

Small-scale crystal module design: impact of gaps

- Gap material in $40 \times 40 \times 28$ supercell: ESR film, Al foil, Air
- Density set to 2 g/cm³

- Impact of gaps is significant
- Gaps for $12 \times 2 \times 2$ cm³ cm crystal: ~0.4 mm
- Control of gaps will be harder with longer crystals: key issue

Small-scale crystal module design: impact of module size

• $40 \times 40 \times 28$ supercell: change the length of the crystal bar from 400 mm to 120 mm

Energy Resolution

- For EM showers, 12 cm size is enough to contain most of the energy when particles hit on the center of the module
- Degradation of energy resolution: ~0.1% level

SiPM response non-linearity study

• SiPM response simulation and fitting

• PDE filter: the random number is smaller than PDE

 Crosstalk filter: random number smaller than crosstalk probability && at least one adjacent pixel is not in fired

• First order:

$$N_{\rm fire}^{\rm LO'} = N_{\rm pix}^{\rm eff} \left(1 - e^{-\epsilon N_{\rm in}/N_{\rm pix}^{\rm eff}}\right).$$

• One pixel receive more than one photon

$$N_{\rm fire}^{\rm NLO} \quad = \quad N_{\rm fire}^{\rm LO} + \alpha N_{\rm R}.$$

• Charge distribution of a photon: considering pixel recovery and scintillation decay

$$N_{\rm fire}^{\rm NLO'} = N_{\rm fire}^{\rm NLO} \frac{\beta + 1}{\beta + \epsilon N_{\rm in}/{\rm LO}}.$$

Crosstalk and afterpulse

$$N_{\rm fire}^{\rm NLO'_{C\cdot A}} = N_{\rm fire}^{\rm NLO'} \left(1 + P_{\rm cross} \cdot e^{-\epsilon N_{\rm in}/N_{\rm pix}} \right) \cdot (1 + P_{\rm after}),$$

ICASiPM_Krause_final.pdf (gsi.de)

[1510.01102] Describing the response of saturated SiPMs (arxiv.org)

