

R&D Progress of AHCAL option with glass scintillator tiles

Dejing Du (Institute of High Energy Physics, CAS) On behalf of CEPC Calorimeter Working Group

> CALICE Collaboration Meeting March 30, 2023

Motivations

- Future electron-position colliders (e.g. CEPC)
 - Main physical goals: precision measurements of Higgs/Z/W bosons
 - Challenge: unprecedented jet energy resolution $\sim 30\% / \sqrt{E(GeV)}$
- CEPC detector: highly granular calorimeter (PFA-oriented)
 - Boson Mass Resolution (BMR) ~4% in baseline design
 - Further performance goal: BMR 4%→3%
 - Dominant factors in BMR: charged hadron fragments & HCAL resolution
- New option: glass scintillator HCAL (GS-HCAL)
 - Same as Scintillator-Steel AHCAL: replace plastic scintillator with glass scintillator
 - Higher density provides higher energy sampling fraction

By Yuexin Wang

Outline

Motivations

• Standalone simulation of GS-HCAL

- Impact of sampling fraction and density
- Energy linearity and resolution with single hadrons

• PFA performance with GS-HCAL

- Key parameters: glass density and cell size
- Optimized performance

Glass scintillator material R&D

- The improvement of key properties
- The preparation of large-scale glass scintillator
- Summary

Outline

- Motivations
- Standalone simulation of GS-HCAL
 - Impact of sampling fraction and density
 - Energy linearity and resolution with single hadrons
- PFA performance with GS-HCAL
 - Key parameters: glass density and cell size
 - Optimized performance
- Glass scintillator material R&D
 - The improvement of key properties
 - The preparation of large-scale glass scintillator
- Summary

HCAL setup in standalone simulation

- Geometry: refer to Scintillator-Steel AHCAL (CEPC CDR baseline)
 - Replace plastic scintillator with glass scintillator
 - Steel absorber: ~13 mm
 - Scintillator tiles size: $30 \times 30 \times 10 \ mm^3$
 - Glass density: 6 g/cm^3

Impact of glass density to energy resolution

- Varying glass scintillator density: 3 to 7 g/cm^3
 - Each layer fixed with ~0.12 λ_I
 - Glass thickness: 10 mm
 - Energy threshold: 0.1 MIP
- Extraction of stochastic and constant terms in energy resolution

Density $[g/cm^3]$	3	4	5	6	7
Stochastic term [%]	33.97	32.25	30.58	29.08	26.94
Constant term [%]	3.24	3.13	3.05	2.95	2.97

- Increasing density can improve hadronic energy resolution
- Considering constraints of light yield in glass R&D, target density set as ~6 g/cm³

Impact of sampling fraction to energy resolution

- Varying thickness: glass scintillator tiles and steel plates
 - Thicker glass → larger sampling fraction
 - Each layer fixed with ~0.12 λ_I
 - Glass density: 6 g/cm^3
- Extraction of stochastic and constant terms in energy resolution

Lower energy threshold would always be desirable for better resolution

- > The stochastic term can be improved with thicker glass tiles
- > The constant term is not significantly affected by the glass thickness for a given energy threshold

Energy linearity and resolution

- Preliminary performance comparison: AHCAL vs. GS-HCAL
 - Same tile transverse size: $30 \times 30 \ mm^3$
 - Glass thickness: 10 mm
 - Glass density: 6 g/cm^3
 - Energy threshold: 0.1 MIP

- > Energy linearity:
 - > Within ±3% range in 10-100 GeV, but with a relatively worse linearity in low energy range
 - GS-HCAL slightly worse than AHCAL
- Energy resolution:
 - GS-HCAL has a better hadronic energy resolution

Outline

- Motivations
- Standalone simulation of GS-HCAL
 - Impact of sampling fraction and density
 - Energy linearity and resolution with single hadrons
- PFA performance with GS-HCAL
 - Key parameters: glass density and cell size
 - Optimized performance
- Glass scintillator material R&D
 - The improvement of key properties
 - The preparation of large-scale glass scintillator
- Summary

Impact of density to BMR

By Peng Hu

- Adapted from CEPCv4 baseline detector
 - SiW ECAL + GS-HCAL
 - Glass tile size: $30 \times 30 \times 10 \ mm^3$
 - HCAL total layers: 40
- Physics performance:
 - Boson Mass Resolution (BMR): resolution of Higgs invariant mass
 - Reconstructed by Arbor-PFA

- Physics events: $e^+e^- \rightarrow v\bar{v}H$ (H \rightarrow gg) at 240 GeV
- Energy threshold: 0.1 MIP

- > BMR tended to improve with larger density
- Glass density ~6 g/cm³ is a relatively reasonable target, which can guarantee a good BMR (~3.3%) and feasibility in R&D

Impact of cell size to BMR

- Varying glass tile transverse size: 10×10 to 100×100 mm²
 - Physics events: $e^+e^- \rightarrow v\bar{v}H$ (H \rightarrow gg) at 240 GeV
 - Glass thickness: 10 mm
 - Glass density: 6 g/cm^3
 - Energy threshold: 0.1 MIP

- \succ BMR improved with smaller transverse size, when tile transverse size is larger than 20×20 mm^2
- Optimal BMR can reach 3.2%
- BMR can further improve by optimization of Arbor-PFA parameters

SiW ECAL + GS-HCAL

By Peng Hu

Outline

- Motivations
- Standalone simulation of GS-HCAL
 - Impact of sampling fraction and density
 - Energy linearity and resolution with single hadrons
- PFA performance with GS-HCAL
 - Key parameters: glass density and cell size
 - Optimized performance
- Glass scintillator material R&D
 - The improvement of key properties
 - The preparation of large-scale glass scintillator
- Summary

The light yield: radioactive source vs. cosmic-ray test

CO

By Dejing Du, Zhehao Hua

	#1	#2
Thickness(D) [mm]	2.6	2
Density(ρ) [g/cm ³]	5.44	3.3
Light yield(LY) [ph/MeV]	1117	3455
MIP [p.e.]	142.6	203.1
MIP/(D×ρ)	10.08	30.77
LY/MIP	110	113

Considering density and thickness, MIP response by cosmic-ray test is consistent with light yield by radioactive source test
Verified the consistency of the test method for the light yield

Overview of the Glass Scintillator R&D

- Glass scintillator samples produced in the past year (>200)
- Different colored boxes correspond to samples from different institutes in collaboration

R&D: Borosilicate Glass (Gd-Al-B-Si-Ce³⁺)

By the GS R&D collaboration group

- Density ~4.5 g/cm³
- LY=802 ph/MeV
- ER=26.77%

- Density ~4.0 g/cm³
- LY>1200 ph/MeV
- ER=23.22%

- Density ~6.0 g/cm³
- LY>1000 ph/MeV
- ER=49.55%

- Density ~6.0 g/cm³
- LY>1200 ph/MeV
- ER=27.12%

2023.02

²²Na

- ¹³⁷Cs

R&D: Glass Ceramic (Gd-Y-K-Si-Ce³⁺)

- Density ~3.3 g/cm³
- LY=519 ph/MeV
- ER=None

2022.04

- Density ~3.3 g/cm³
- LY>1600 ph/MeV
- ER=27.27%

2022.10

By the GS R&D collaboration group

2022.11

Large-scale glass scintillator

By the GS R&D collaboration group

Gd-Al-B-Si-Ce³⁺glass 42mm×51mm×10mm

New system: Gd-Ga-B-Ce³⁺ 20mm×20mm×12mm

- Largest glass scintillator: $42 \times 51 \times 10 \ mm^3$
- Properties of glass scintillator become worse after enlarging
 - Light yield, transmittance, uniformity
- Preparation technology of large size glass should be further optimized

Summary of Glass Scintillator R&D

Glass scintillator with high density, light yield, good energy resolution and fast decay time

- Gd-Al-B-Si-Ce³⁺ glass: 6.0 g/cm³, 1072 ph/MeV with 24.4%@662keV, 460 ns
- Ultra-high density tellurite glass—6.6 g/cm³
- High light yield glass ceramic—3400 ph/MeV
- Large size glass—42mm×51mm×10mm

Summary and prospects

- Performance of GS-HCAL in standalone simulation
 - Key parameters: glass density and thickness
 - Better hadronic energy resolution
- PFA performance for GS-HCAL
 - Optimization of density and cell size
 - Preliminary result: BMR can reach 3.2%
- Ongoing glass scintillator R&D activities to address
 - High density, high light yield, fast decay time and large size
- Plans
 - To further improve the hadronic energy resolution: e.g. "Software compensation" technique
 - Some parameters of Arbor-PFA should be tuned for the glass scintillator HCAL
 - Enlarge glass size while keeping the same as properties of small size

Backup

Energy linearity and resolution

- Geometry: refer to Scintillator-Steel AHCAL (CEPC CDR baseline)
 - Steel absorber: 20 mm
 - Scintillator size: $30 \times 30 \times 3 mm^3$
 - Replace plastic scintillator with glass scintillator
- Glass density: 6 g/cm^3
- Energy threshold: 0.1 MIP
- Incident particle: 1-100 GeV K_L^0

- - Glass scintillator slightly worse than plastic scintillator
 - \blacktriangleright Within ±3% range in 10-100 GeV, but with a relatively worse linearity in low energy range
- ➢ GS-HCAL has a better hadronic energy resolution

100

Impact of thickness and #layers to BMR

- Varying thickness: glass scintillator tiles and steel plates
 - Each layer fixed with ~0.12 λ_I
 - Glass density = 6
- e+e- $\rightarrow v \bar{v} H (H \rightarrow gg)$ at 240 GeV
- Energy threshold = 0.1 MIP

- BMR can be improved with the increasing of number of layers below 80 layers
- For GSHCAL of more than 80 layers, the effect of shower leakage on BMR can be ignored
- The BMR of 40-layers can reach 3.42%
- For ideal setup of more than 80 layers, BMR can be further improved to 3.33%

By Peng Hu

Threshold impacts

- Higher threshold can suppress noise impacts
 - SiPM dark noise is negligible (< 1 Hz) when threshold > 4.5 p.e.
- Electronics threshold vs. energy threshold (HCAL reconstruction)
 - 0.1 MIP (energy) \rightarrow 14 p.e (voltage)
- Energy threshold of 0.1 MIP is feasible

CALICE Collaboration Meeting

R&D: Silicate Glass (Gd-Al-Si-Ce³⁺)

By the GS R&D collaboration group

- Density ~4.0 g/cm³
- LY=807 ph/MeV
- ER=29.29%

- LY>1200 ph/MeV
- ER=22.98%

2022.05

- Density ~4.2 g/cm³
- LY>1300 ph/MeV
- ER=23.22%

