Double Readout

sandwich calorimeter

Tohru Takeshita (Shinshu) CALICE meeting at Göttingen 30Mar2023

- Homogeneous calorimeter simulation
- double readout sandwich calorimeter

Homogeneous CAL

simulation with GEANT4.11.0 with FTFP_BERT

photon statistics is not taken into account

- two parameters to measure
 - sum of Track Length (TL) ~ Cherenkov light
 - sum of Energy Deposit (ED) ~ Scintillation light
- correlation : linear behavior dE/dx
 - intercept \rightarrow linearity
 - **slope** \rightarrow **constant** independent of energy
 - common for e/pi/K/p/n

(2mx2mx2m)

sim.

energy resolution

- good correlation between ED and TL
- Energy measured by the intercept
- energy resolution is expressed by intercept width : projected to dEdx=ED axis

fine energy resolution will be achieved

Cherenkov light

- Track length ~ Cherenkov lights
- Cherenkov is low light and $1/\lambda^2$
 - need heavy and UV transparent material
 - will be absorbed and converted to scintillation light
- difficult to separate lights

a new idea :DRSC

- separate Cherenkov radiator and TL Scintillation material with sandwich cal.
- with highly granular option for PFA

Segmented in three dimensions according to the physics requirements

performance of DRSC (2mx2mx2m cal)

- ED vs TL relation holds for sandwich calorimeter
- for both e's and pions
- LG8mm+PW08 125layers

resolution of DRSC

- ~20%/√E(GeV) with DRSC
- much better than dEdx calorimeter : traditional cal.

energy resolution

compare dEdx cal. and DRSC in terms

hardware development

hardware development

hardware development

side setup

normal

-MPPC

UV-MPPC

Al foil

reflector

1cm

normal

-MPPC

- Cherenkov detection in UV region top setup
- radiator : JGS1(1cm) UV-MPPC 3cmx3cm
- UV & normal MPPC
- 6x6mm²

 air & silicon grease 	JGS1	Grease top	Air top	Air side
 4 unpolished surface inexpensive 	UV (p.e.)	2.7	0.5	3.8
	Normal (p.e.)	1.7	0.6	2.5

summary and outlook

- Double Readout sandwich calorimeter
- a relation between sum of Track Length (Cherenkov) and Energy Deposit leads fine energy resolution from sim.
- actual implementation is proposed as DRSC $\pi + 2000$
- R&D for DRSC is on going
 - Cherenkov light detection

reason of intercept

- when particles stop in a shower
 - Bragg peak will be detected by scintillator
 - no peak for Cherenkov
- intercept corresponds to number of stopping particles

Different detector material

Liquid Argon, & Csl are simulated

TL vs Cherenkov light nice correlation : we can use track length

instead of number of Cherenkov light

DRSC

- LG 4mm + Plastic Scintillator 8mm sandwich cal
- need heavier scintillator

