Development of High-Granularity Dual-Readout Calorimeter with psec Timing

US J. Freeman (Fermilab, PI), C. Gatto (NIU)

Japan W. Ootani (Tokyo, PI), T. Takeshita (Shinshu), T. Suehara (Kyushu), D. Jeans (KEK), K. Matsuoka (KEK)

New R&D program approved in "U.S.-Japan Science and Technology Cooperation **Program in High Energy Physics**"

Concept of Proposed Calorimetry

Y. Kim, EIC Calorimeter Workshop 2021

psec timing PID, BG reduction, improve PFA

W. Ootani "Development of High-Granularity Dual-Readout Calorimeter with psec Timing", CALICE Collaboration, University of Göttingen, Mar. 31st, 2023

Better performance at low energy

New calorimetry for future colliders

Overview of Research Plan How to Combine High-granularity and Dual-readout with Excellent Timing

Possible Applications

• Generic R&D, but many applications at future experiments foreseeable

Calorimeters for Higgs factories

EIC **Electron-Ion Collider**

Hadron Calorimeter Endcap **Electromagnetic Calorimeter Cherenkov Counter** Barrel EM Calorimeter DIRC Solenoidal Magnet **RICH Detector Barrel Hadron Calorimeter Transition Radiation Detector Preshower Calorimeter** Electromagnetic Calorimeter Hadron Calorimeter Endcap

REDTOP Rare Eta Decays To Observe new Physics

Cherenkov Detector

+HV

Proposed concept

- Cherenkov radiator + UV-GasPM
- •UV-GasPM
 - Photocathode: Csl
 - Electron multiplier: DLC-RPC

Expected Advantages

- Uniform and efficient Cherenkov readout
- Excellent timing (thin gap without no drift region)
- High-rate capable
- Low- and uniform- mass distribution
- Large area at low-cost
- High-granularity with segmented readout pad for RPC

Target timing resolution

• $\mathcal{O}(10 \, \mathrm{ps})$ with multiple photoelectrons from Cherenkov light

Cherenkov Detector

• Ultra-low-mass high-rate-capable RPC for MEG II experiment

- Diamond-Like-Carbon (DLC) -based electrode
- Ultra-low mass: $0.1 \% X_0$ with 4 layers
- High efficiency: > 90% with 4 layers
- Good time resolution: $160 170 \, \text{ps}$ with single layer (no optimisation for timing)
- High rate capability: > 1 MHz/cm^2

Fast timing photo-detector based on RPC-GasPM

• Single photon resolution of $25 \, \mathrm{ps}$ with prototype

Prototype of Gas PM with RPC (KEK, K. Matsuoka)

https://arxiv.org/abs/2302.12694

Japan |

Ref) https://pcs-instruments.com/articles/thescience-behind-diamond-like-coatings-dlcs/

Development of Cherenkov radiator (NIU)

- Selection of radiator material: VUV-transparent crystal (λ =100-200nm)
- Tiles slicing and polishing

Development of high-QE Csl photocathode (Fermilab)

- Transmission-type CsI photocathode with high QE
- Deposition of Al electrode

Tile machining at NIU

Cherenkov Detector Progress in Japan

• First test of DLC-RPC with thinner gap

- Gap: 192 µm
- Anode: $4 M\Omega/sq$, Cathode: $40-55 M\Omega/sq$
- Gas: R134a/SF6/isobutane (94/1/5)
- NOT optimised for timing yet

Cherenkov Detector Progress in Japan

Timing resolution

- Best resolution of $80 \, \mathrm{ps}$ obtained for large signal
 - Large signal = avalanche over full gap length in GasPM
 - Average # primary electrons ~2

 \Rightarrow Single photoelectron time resolution: $80 \text{ ps} \times \sqrt{2} \sim 110 \text{ ps}$

Timing resolution expected for Cherenkov detector

- Expected # photoelectrons with (3mm-thick MgF2 and CsI photocathode) ≥10
- \Rightarrow Expected timing resolution 35 ps

Promising. (N.B. still not optimised for timing)

Cherenkov Detector Progress in US

Investigation of best Cherenkov radiator material

- Setting up numerical computation for photoelectron yield
- Acquired radiator material candidates (sapphire, MgF₂, VUV glasses)

Preparation for photocathode coating

- Design of coating (conductive under-layer, electrode for bias voltage)
- Purchased optical profilometer and VUV sectrophotometer to check coating quality

Optical profilometer

VUV spectrophotometer

Sapphire (uncoadted)

Fermilab evaporation system for CsI photocathode deposition

Readout electronics

- Waveform digitizer (CAEN DT5742B, DRS4 16ch) for initial lab test (time resolution < 50ps)
- CAEN PETIROC system (64ch) for prototype beam test (time resolution ~15ps)

CAEN DT5742B

Scintillation Detector

SiPM-on-strip technology

- Technology developed for CALICE high-granularity scintillator-strip ECAL
- High granularity with reduced number of readout channels $(\times 1/10)$

Challenges for this R&D

- Wider and longer strip
- Light yield and uniform response
- Possibility of double SiPM readout

Scintillator material production (US)

- Scintillator pellet with high light yield
- R&D on reflective coating
- Injection moulding (Japan)
 - Technology developed for CALICE Sc-ECAL

outside scope of US-Japan program due to limited budget

Strip-SiPM optical coupling (Tokyo, Shinshu)

scintillator strip MPPC

Metal moulding for scintillator strip (Tokyo, Shinshu)

Equipments for scintillator pellets production (Fermilab)

Simulation Study

Setup

- Based on AHCAL test beam setup
- Large stack instrumented with 30x30mm², 3mm-thick tiles, total size 2.16 x 2.16 x 2.133 m³
- Alternate layers of plastic scint / sapphire

Digitisation

- Scintillator: 10p.e./MIP, 10k-pixel SiPM
- Cherenkov: Count superluminal path length within tile (v > c/n)

Transverse profile: 10GeV π^-

W. Ootani "Development of High-Granularity Dual-Readout Calorimeter with psec Timing", CALICE Collaboration, University of Göttingen, Mar. 31st, 2023

Longitudinal profile: 10GeV π^-

New R&D for new calorimetric technique to address crucial requirements for calorimeters at future collider experiments started

Cherenkov detector

- Cherenkov radiator + UV-GasPM with DLC-RPC
- Excellent timing resolution of $\mathcal{O}(10 \, \mathrm{ps})$ targeted
- Can be applied to other projects as timing detector

Scintillation detector

- SiPM-on-strip technology
- Optimisation for strip-SiPM deign in progress

• Plan

- Construction and performance test of first prototype of Cherenkov detector to be done soon
- Construction of full prototype toward beam test at Fermilab in 2024

Summary

• Fusion of two key calorimeter technologies (high-granularity and dual-readout) together with excellent timing performance

