

Clustering of Calorimeter Hits with GravNet

Kyushu Univ.^A, Osaka Univ. RCNP ^B, Osaka Univ. IDS^C, Kyushu Institute of Technology ^D Shusaku Tsumura ^A, Taikan Suehara ^A, Kiyotomo Kawagoe ^A, Hajime Nagahara ^{B,C}, Yuta Nakashima ^{B,C}, Noriko Takemura^{c,d}

CALICE collaboration meeting at Gottingen, 29th Mar. 2023

2 ILD / SiW ECAL

- Electromagnetic calorimeter (ECAL): Detects positions , and energy of gamma rays
 - \rightarrow Higher accuracy of particle identification: PFA
- SiW ECAL equips a lot of channels (~10⁸) to identify each particle.
- Sandwich structure with 30 alternating layers of Si detection layer and W absorption layer.
- W-absorbing layer: Electromagnetic shower is induced when electrons and gamma rays are incident. $\rightarrow \sim 24 X_0$ in total
- Feature: Moliere radius is small enough to separate each particle

3 Application of Deep Learning to PFA

- Current PFA algorithm : PandoraPFA
 →The pattern recognition based on the human-tuned parameters
- Our targets:
 - Improve performance by reducing confusion term
 - Adding timing information
 - Checking detector effects on
 - Granularity (inc. MAPS?)
 - Timing resolution

4 Calorimeter Clustering

- Input: features of hit in the calorimeter e.g., position, energy, etc.
 → discriminate each cluster
- Deep Learning Architecture
 - Based on Graph Neural Network developed for CMS HGCal

5 Deep Learning

Fully Connected Layer

- One of the most basic structures in deep learning
- Consists of an input layer, a hidden layer, and an output layer
- A more expressive network can be built by increasing the number of layers

Graph Neural Network

- A network is constructed as a graph consisting of nodes (points) and edges (lines)
- Not only can it learn the features of materials with a graph-like structure, but it can also be used in many ways, such as expressing the relationship between features as a graph.

6 GravNet

• Input Data : $V \times F_{IN}$

- V: Number of hits for each detector F_{IN} : Number of the features for each hit
- S : Set of coordinates in some learned representation space
- F_{LR} : learned representation of the vertex features
- Input data of initial dimension $V \times F_{IN}$ is converted into a graph.
- The coordinates of the graph is updated by the learning of the network.

7 GravNet

- The contribution of each point is bigger depending on the distance between the points
- The output is calculated for each point based on the contribution
- At last, the outputs $(\widetilde{F_{LR}})$ are concatenated with the initial inputs and previous outputs and pass the FC layer.
- The F_{OUT} output carries collective information from each vertex and its surrounding.

8 Object Condensation

- A loss function technique to recognition for multi-object
- Get the output from GravNet as β and output whether the hit seems to be a representative point of the particle ($0 < \beta < 1$)
- Employs two terms as Loss terms to improve cluster and background identification

$$L = L_V + L_\beta$$

- L_V : The closer the hit is to a particle with high β and belonging to the same particle, the smaller it is, and the more it belongs to a different particle, the larger it is.
 - \rightarrow Equivalent to the attractive and repulsive forces acting on an electric charge
- L_{β} : Converge β to 1 for only one of each particle corresponding to a true cluster The remaining β works its way closer to 0

Output of network

- Beta (condensation)
- 2 x coordinate per hit Used for clustering

9 Clustering

- Get "condensation point" with hits with beta > threshold
- Cluster other hits to nearest condensation point in the virtual coordinate (of network output)

IO Generation of Input Data

- Two gamma events are generated by ILD detector simulation
- 10000 Events are generated for each of the five data sets from 30 to 150 mrad
- θ : 85/180 π , ϕ : random, momentum: 5.0 GeV

Gamma-ray

II Event Display

• Cluster identification resulting from learning (test data) :

12 Event Display

• Cluster identification resulting from learning for small opening angles(test data) :

Number of hits which is predicted correctly

• Accuracy : Number of hits with true label of each cluster

- The simulation data includes events where photons are converted into other particles.
- As input data, events with only two clusters are selected

Angle[mrad]	30	60	90	120	150
Accuracy[%]	96.08	98.64	99.30	99.68	99.56
All I see the second second second		Edition of the second second second		A REAL PROPERTY AND A REAL	Jun to a star a function

14 Plans

- Testing on more complicated structures (taus, jets)
 - Clear and good definition of "MC truth cluster" is important
 - Currently only taking two clusters (without conversion)
- Track-cluster matching
 - Several methods possible (including "artificial" condensation points by tracks)
 - How to use direction and momentum of tracks is an issue
- Introducing timing information
 - Rather straightforward to introduce it to input variables (much easier than PandoraPFA)
 - Regression of timing/energy should be tried (possible within current framework)

15

BACKUP

I6 GRAVNET - NETWORK -

- Input Data : $B \times V \times F_{IN}$
 - *B* : Number of examples including in a batch
 - V : Number of hits for each detector
 - $F_{\text{IN}}:$ Number of the features for each hit
- S : Set of coordinates in some learned representation space
- F_{LR} : learned representation of the vertex features

I7 GRAVNET

- Input example of initial dimension $V \times F_{IN}$ is converted into a graph.
- the f_j^i features of the v_j vertices connected to a given vertex or aggregator v_k are converted into the $\tilde{f_{jk}}^i$ quantities, through a potential (function of euclidean distance d_{ik}).
- The potential function $V(d_{jk})$ is introduced to enhance the contribution of close-by vertices. Example: $V(d_{jk}) = \exp(-d_{jk}^2)$
- The fik i functions computed from all the edges associated to a vertex of aggregator vk are combined, generating a new feature fk i of vk.
 Example : the average of the fik across the j edges / their maximum

I8 GRAVNET

- For each choice of gathering function, a new set of featur
- The $\widetilde{F_{LR}}$ vector is concatenated to the initial vector.
- Activation function : tanh
- The F_{OUT} output carries collective information from each vertex and its surrounding.

19 Object Condensation

- Get the output from GravNet as β and output whether the hit seems to be a r point of the particle ($0 < \beta < 1$)
- Employs two terms as Loss terms to improve cluster and background identification

$$L = L_V + L_\beta$$

- L_V : The closer the hit is to a particle with high β and belonging to the same particle, the smaller it is, and the more it belongs to a different particle, the larger it is.
 - \rightarrow Equivalent to the attractive and repulsive forces acting on an electric charge
- L_{β} : Converge β to 1 for only one of each particle corresponding to a true cluster The remaining β works its way closer to 0

20 LOSS FUNCTION - NETWORK LEARNING -

- The value of β_i ($0 < \beta_i < 1$) is used to define a charge q_i per vertex i $q_i = \operatorname{arctanh}^2 \beta_i + q_{\min} \quad (\beta_i \to 1 : q_i \to +\infty)$
- The charge q_i of each vertex belonging to an object k defines a potential $V_{ik}(x) \propto q_i$
- The force affecting vertex j can be described by

 $M_{ik} = \begin{cases} 1 \ (vertex \ i \ belonging \ to \ object \ k) \\ 0 \ (otherwise) \end{cases} q_{ik}$

$$v_j \cdot \nabla V_k(x_j) = q_j \nabla \sum_{i=1}^N M_{ik} V_{ik}(x_j, q_i)$$

21 LOSS FUNCTION

• The potential of object k can be approximated :

 $V_k(x) \approx V_{\alpha k}(x, q_{\alpha k}), \text{ with } q_{\alpha k} = \max_i q_i M_{ik}.$

• An attractive and repulsive potential are defined as :

$$\vec{V}_k(x) = ||x - x_{\alpha}||^2 q_{\alpha k}, \text{ and}
\hat{V}_k(x) = \max(0, 1 - ||x - x_{\alpha}||) q_{\alpha k}.$$

• The total potential loss L_V :

$$L_{V} = \frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K} \left(M_{jk} \breve{V}_{k}(x_{j}) + (1 - M_{jk}) \hat{V}_{k}(x_{j}) \right)$$

22 LOSS FUNCTION

- The L_V has the minimum value for $q_i = q_{\min} + \epsilon \ \forall i$
- To enforce one condensation point per object, and none for background or noise vertices, the following additional loss term L_{β} is introduced : s_{B} : hyperparameter describing the

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,$$

background suppression strength K: Maximum value of objects N_B : Number of background n_i : Noise tag (if noise, it equals 1.)

• The loss terms are also weighted by $\operatorname{arctanh}^2\beta_i$:

$$L_p = \frac{1}{\sum_{i=1}^{N} \xi_i} \cdot \sum_{i=1}^{N} L_i(t_i, p_i) \xi_i, \text{ with}$$
$$\xi_i = (1 - n_i) \operatorname{arctanh}^2 \beta_i.$$

 p_i : Featutes $L_i(t_i, p_i)$: Loss term (Difference between true labels and outputs of network)

- Accuracy = Number of hits with predicted label correctly Number of hits with true label
- Opening angle = 0.5 rad (the largest one)
- Event selection : events which include 2 clusters

Opening angle = 0.4 rad

Opening angle = 0.3 rad

Average = 99.30%

Opening angle = 0.2 rad

Opening angle = 0.1 rad (the smallest one)

1511-11-1

11 1 1 P

COMPARISON BETWEEN PREDICTION AND TRUE LABEL

COMPARISON BETWEEN PREDICTION AND TRUE LABEL

COMPARISON BETWEEN PREDICTION AND TRUE LABEL

NUMBER OF CLUSTER IN EACH EVENT(JUST 100 EVENTS)

