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ILD / SiW ECAL

• Electromagnetic calorimeter (ECAL): Detects positions , and energy of gamma rays
→ Higher accuracy of particle identification: PFA

• SiW ECAL equips a lot of channels (~108) to identify each particle.

• Sandwich structure with 30 alternating layers of Si detection layer and W absorption layer.

• W-absorbing layer: Electromagnetic shower is induced when electrons and gamma rays are incident.
 ~ 24 X0 in total

• Feature: Moliere radius is small enough to  separate each particle
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Application of Deep Learning to PFA

• Current PFA algorithm : PandoraPFA 
The pattern recognition based on the human-tuned parameters

• Our targets:

• Improve performance
by reducing confusion term

• Adding timing information

• Checking detector effects on

• Granularity (inc. MAPS?)

• Timing resolution
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Calorimeter Clustering

• Input: features of hit in the calorimeter e.g., position, energy, etc.
 discriminate each cluster

• Deep Learning Architecture 
• Based on Graph Neural Network developed for CMS HGCal
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Simple sim with HGCal-like geometry



Deep Learning

Fully Connected Layer
• One of the most basic structures in deep learning
• Consists of an input layer, a hidden layer, and an output layer
• A more expressive network can be built by increasing the number of layers

Graph Neural Network
• A network is constructed as a graph consisting of nodes (points) and edges (lines)
• Not only can it learn the features of materials with a graph-like structure, but it 

can also be used in many ways, such as expressing the relationship between 
features as a graph.
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GravNet

• Input Data : 𝑉𝑉 × 𝐹𝐹𝐼𝐼𝐼𝐼

V ∶ Number of hits for each detector
FIN ∶ Number of the features for each hit

• S : Set of coordinates in some learned representation space

• 𝐹𝐹𝐿𝐿𝐿𝐿 : learned representation of the vertex features

• Input data of initial dimension 𝑉𝑉 × 𝐹𝐹𝐼𝐼𝐼𝐼 is converted into a graph.

• The coordinates of the graph is updated by the learning of the network.
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GravNet

• The contribution of each point is bigger depending on the 
distance between the points

• The output is calculated for each point based on the contribution

• At last, the outputs ( �𝐹𝐹𝐿𝐿𝐿𝐿) are concatenated with the initial inputs 
and previous outputs and pass the FC layer.

• The 𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂 output carries collective information from each vertex 
and its surrounding.
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Object Condensation

• A loss function technique to recognition for multi-object

• Get the output from GravNet as 𝛽𝛽 and output whether the hit seems to be a representative 
point of the particle (0 < 𝛽𝛽 < 1)

• Employs two terms as Loss terms to improve cluster and background identification
𝐿𝐿 = 𝐿𝐿𝑉𝑉 + 𝐿𝐿𝛽𝛽

• 𝐿𝐿𝑉𝑉 : The closer the hit is to a particle with high 𝛽𝛽 and belonging to the same particle, the 
smaller it is, and the more it belongs to a different particle, the larger it is.
→ Equivalent to the attractive and repulsive forces acting on an electric charge

• 𝐿𝐿𝛽𝛽 : Converge 𝛽𝛽 to 1 for only one of each particle corresponding to a true cluster
The remaining 𝛽𝛽 works its way closer to 0
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Output of network
• Beta (condensation)
• 2 x coordinate
per hit
Used for clustering



Clustering

• Get “condensation point” with hits with beta > threshold

• Cluster other hits to nearest condensation point in the virtual coordinate
(of network output) 
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Generation of Input Data

• Two gamma events are generated by ILD detector simulation

• 10000 Events are generated for each of the five data sets 
from 30 to 150 mrad

• 𝜃𝜃: 85/180 𝜋𝜋 ,  𝜙𝜙:  random, momentum: 5.0 GeV 

Generation of MC particles
Simulation based on detector 

geometry by ddsim

Reconstruction of hits 
in the detector by Marlin

Two gamma event

Calorimeter

Gamma-ray

Interaction
point
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30 – 150 mrad



Event Display

• Cluster identification resulting from learning (test data)：
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Event Display

• Cluster identification resulting from learning for small opening angles(test data)：
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Evaluation of Network

• Accuracy：
Number of hits which is predicted correctly
Number of hits with true label of each cluster

• The simulation data includes events where photons are converted into 
other particles. 

• As input data, events with only two clusters are selected

Average = 99.56%

Average = 96.08%

Angle[mrad] 30 60 90 120 150

Accuracy[%] 96.08 98.64 99.30 99.68 99.56

30 mrad

150 mrad
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Plans

• Testing on more complicated structures (taus, jets)
• Clear and good definition of “MC truth cluster” is important

• Currently only taking two clusters (without conversion)

• Track-cluster matching
• Several methods possible (including “artificial” condensation points by tracks)

• How to use direction and momentum of tracks is an issue

• Introducing timing information
• Rather straightforward to introduce it to input variables (much easier than PandoraPFA)

• Regression of timing/energy should be tried (possible within current framework)
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BACKUP

2023/3/27General Meeting of ILC-Japan Physics WG
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GRAVNET  - NETWORK -

• Input Data : 𝐵𝐵 × 𝑉𝑉 × 𝐹𝐹𝐼𝐼𝐼𝐼
𝐵𝐵 ∶ Number of examples including in a batch
V ∶ Number of hits for each detector

FIN ∶ Number of the features for each hit

• S : Set of coordinates in some learned representation space

• 𝐹𝐹𝐿𝐿𝐿𝐿 : learned representation of the vertex features

2022/9/16
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GRAVNET

• Input example of initial dimension 𝑉𝑉 × 𝐹𝐹𝐼𝐼𝐼𝐼 is converted into a graph.

• the 𝑓𝑓𝑗𝑗𝑖𝑖 features of the 𝑣𝑣𝑗𝑗 vertices connected to a given vertex or aggregator 𝑣𝑣𝑘𝑘 are converted into the �𝑓𝑓𝑗𝑗𝑘𝑘
𝑖𝑖

quantities, through a potential 
(function of euclidean distance 𝑑𝑑𝑗𝑗𝑘𝑘 ). 

• The potential function 𝑉𝑉 𝑑𝑑𝑗𝑗𝑘𝑘 is introduced to enhance
the contribution of close-by vertices.
Example: 𝑉𝑉 𝑑𝑑𝑗𝑗𝑘𝑘 = exp(−𝑑𝑑𝑗𝑗𝑘𝑘2 )

• The �𝑓𝑓𝑗𝑗𝑘𝑘
𝑖𝑖

functions computed from all the edges associated 
to a vertex of aggregator 𝑣𝑣𝑘𝑘 are combined, generating a new 

feature �𝑓𝑓𝑘𝑘
𝑖𝑖

of 𝑣𝑣𝑘𝑘.

Example : the average of the �𝑓𝑓𝑗𝑗𝑘𝑘
𝑖𝑖

across the j edges / their maximum

2022/9/16
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𝑠𝑠1, 𝑠𝑠2 → 𝑆𝑆
𝑓𝑓𝑗𝑗𝑖𝑖 → 𝐹𝐹𝐿𝐿𝐿𝐿



GRAVNET

• For each choice of gathering function, a new set of features �𝑓𝑓𝑘𝑘
𝑖𝑖 ∈ �𝐹𝐹𝐿𝐿𝐿𝐿 is generated.

• The �𝐹𝐹𝐿𝐿𝐿𝐿 vector is concatenated to the initial vector.

• Activation function : tanh 

• The 𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂 output carries collective information from
each vertex and its surrounding.

2022/9/16
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Object Condensation

• Get the output from GravNet as 𝛽𝛽 and output whether the hit seems to be a representative 
point of the particle (0 < 𝛽𝛽 < 1)

• Employs two terms as Loss terms to improve cluster and background identification

𝐿𝐿 = 𝐿𝐿𝑉𝑉 + 𝐿𝐿𝛽𝛽

• 𝐿𝐿𝑉𝑉 : The closer the hit is to a particle with high 𝛽𝛽 and belonging to the same particle, the 
smaller it is, and the more it belongs to a different particle, the larger it is.
→ Equivalent to the attractive and repulsive forces acting on an electric charge

• 𝐿𝐿𝛽𝛽 : Converge 𝛽𝛽 to 1 for only one of each particle corresponding to a true cluster
The remaining 𝛽𝛽 works its way closer to 0

2022/9/16
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LOSS FUNCTION - NETWORK LEARNING -

• The value of 𝛽𝛽𝑖𝑖 (0 < 𝛽𝛽𝑖𝑖 < 1) is used to define a charge 𝑞𝑞𝑖𝑖 per vertex i
𝑞𝑞𝑖𝑖 = arctanh2𝛽𝛽𝑖𝑖 + 𝑞𝑞min (𝛽𝛽𝑖𝑖 → 1 ∶ 𝑞𝑞𝑖𝑖 → +∞)

• The charge 𝑞𝑞𝑖𝑖 of each vertex belonging to an object k
defines a potential 𝑉𝑉𝑖𝑖𝑘𝑘 𝑥𝑥 ∝ 𝑞𝑞𝑖𝑖

• The force affecting vertex j can be described by 

2022/9/16
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𝑀𝑀𝑖𝑖𝑘𝑘 = �1 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑥𝑥 𝑖𝑖 𝑏𝑏𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏 𝑣𝑣𝑏𝑏 𝑏𝑏𝑏𝑏𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣 𝑘𝑘)
0 (𝑏𝑏𝑣𝑣𝑜𝑣𝑣𝑣𝑣𝑜𝑜𝑖𝑖𝑠𝑠𝑣𝑣)



LOSS FUNCTION

• The potential of object k can be approximated :

• An attractive and repulsive potential are defined as :

• The total potential loss 𝐿𝐿𝑉𝑉 : 

2022/9/16
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LOSS FUNCTION

• The 𝐿𝐿𝑉𝑉 has the minimum value for 𝑞𝑞𝑖𝑖 = 𝑞𝑞min + 𝜖𝜖 ∀𝑖𝑖

• To enforce one condensation point per object, and none for background or noise 

vertices, the following additional loss term 𝐿𝐿𝛽𝛽 is introduced : 

• The loss terms are also weighted by arctanh2 𝛽𝛽𝑖𝑖 : 

2022/9/16
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𝑠𝑠𝐵𝐵 ∶ hyperparameter describing the 
background suppression strength
𝐾𝐾 ∶ Maximum value of objects
𝑁𝑁𝐵𝐵 : Number of background
𝑏𝑏𝑖𝑖 : Noise tag (if noise, it equals 1.)

𝑝𝑝𝑖𝑖: Featutes
𝐿𝐿𝑖𝑖(𝑣𝑣𝑖𝑖 , 𝑝𝑝𝑖𝑖) :  Loss term (Difference between true 
labels and outputs of network) 



EVALUATION

• Accuracy = 𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖ℎ 𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑁𝑁𝑝𝑝 𝑙𝑙𝑙𝑙𝑁𝑁𝑁𝑁𝑙𝑙 𝑝𝑝𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑖𝑖𝑙𝑙𝑐𝑐
𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙𝑁𝑁𝑁𝑁𝑙𝑙

• Opening angle = 0.5 rad (the largest one)

• Event selection : events which include 2 clusters

Average = 99.56%



EVALUATION

Average = 99.68%

Opening angle = 0.4 rad 



EVALUATION

Average = 99.30%

Opening angle = 0.3 rad 



EVALUATION

Average = 98.64%

Opening angle = 0.2 rad 



EVALUATION

Average = 96.08%

Opening angle = 0.1 rad (the smallest one) 



COMPARISON BETWEEN PREDICTION AND TRUE LABEL

Good example : 



COMPARISON BETWEEN PREDICTION AND TRUE LABEL

The case in which there is a distant hit



COMPARISON BETWEEN PREDICTION AND TRUE LABEL



COMPARISON BETWEEN PREDICTION AND TRUE LABEL

Confusion example : 



NUMBER OF CLUSTER IN EACH EVENT(JUST 100 EVENTS)

These events should be 
checked
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