Combined Performance of the DHCAL with the Si-W ECAL

Melissa Almanza Soto^{*} and François Corriveau McGill University

CALICE Collaboration Meeting March 31st, 2023

Abstract

This thesis presents a study of the alignment and the energy response to pions of a combined electromagnetic and hadronic calorimeter system using two calorimeter prototypes from the CALICE international collaboration: the Digital Hadron Calorimeter (DHCAL) and the Silicon-Tungsten Electromagnetic Calorimeter (Si-W ECAL). The data was taken in April 2011 at the Fermilab test beam facilities. The experimental setup was exposed to a range of beam energies from 4 to 120 GeV. A first study and correction of the misalignment between detectors was performed using muon tracks. The linearity of DHCAL for hadronic and electromagnetic showers was next investigated. The prototype presented significant signal saturation effects for beam energies above 60 GeV. Finally, energy calibration factors for the calorimeters were obtained for hadronic events. Using the calibration, the hadronic energy resolution of the DHCAL was calculated to become 44%/sqrt{E/GeV}. This presents a 25% improvement from the energy resolution calculated with hit-to-energy conversion methods excluding ECAL.

Goal

How does adding ECAL improve the DHCAL standalone pion energy resolution performance?

CALICE Collaboration Meeting October 2022 M. Almanza Soto and F.Corriveau Calorimeter Comparison

Intent

Detectors and Datasets

2011 versions of SiW ECAL and DHCAL (1x1 cm² cells)

Testing period	Configuration	Combined detector layers	Collected μ events	Collected secondary beam events
October 2010	DHCAL	38	1.4M	1.7M
January 2011	DHCAL+TCMT	38+13=51	1.6M	3.6M
April 2011	Si-W ECAL+DHCAL+ TCMT	30+38+14=92	2.5M	5.1M
June 2011	DHCAL+TCMT	38+14=52	3.3M	2.7M
November 2011	MinDHCAL	50	0.6M	1.3M
Total			9.4M	14.4M

CALICE Collaboration Meeting October 2022 M. Almanza Soto and F.Corriveau Calorimeter Comparison —

Data

A	pril2011	L
Beam energy (GeV)	Runs	Number of ev
8	2	506095
12	5	216052
16	4	355449
25	2	183466
32	5	410833
40	5	386994
50	4	390220
60	5	157051
120	3	123693
Total	35	2729853

Ju	ine 2011	
Beam energy (GeV)	Runs	Number of ev
8	5	264770
16	4	312021
32	5	306665
40	8	379803
50	8	336071
60	6	306083
120	9	490413
Total	45	2395826

Event Examples

CALICE Meeting 12-14 Oct 2022

Si-W ECAL + DHCAL

Y= Vertical X =Horizontal Z = Along detector layers Pion $\overline{}$ 16141210 8 6 4 2 0 × 20 25 25 20 15 715 10 10 5 5 908070605040302010 0 0 10 20 30 9607605040302010 0 10 20 30 40 50 40 CALICE work in progress

Melissa Almanza Soto

M. Almanza Soto and F.Corriveau - CALICE Collaboration Meeting October 2022

424.5
0.4818
4
81
0

Caveats:

- SiW ECAL online calibration only
- ECAL+DHCAL at 50, 60, 120 GeV only, no dedicated muon run available.
- particle ID from the data itself (biased) since beam Cerenkov detectors were unavailable most of the time

But:

• this is a relative measurement study

scatterHitsRatio15 22181 Entries Mean x 424.5 0.4818 Mean y 2428 0 4 81 19668 0 0 0 0 1.000

- Calorimeter Comparison

Event Selection

April 2011 Particle ID Cuts				
e^+	$50 \mathrm{GeV}$	60 GeV	120 GeV	
Number of hits DHCAL	<25	<75	<150	
Number of hits ECAL	>120	>120	>120	
Ratio ECAL	>0.95	>0.85	>0.8	
π^+	$50 \mathrm{GeV}$	60 GeV	120 GeV	
Number of hits DHCAL	>50	>110	>200	
Number of hits ECAL				
Ratio ECAL	< 0.9	< 0.75	<0.7	
μ^+	50 GeV	60 GeV	120 GeV	
Number of hits DHCAL	60 <hits<100< td=""></hits<100<>			
Number of hits ECAL	<120			
Ratio ECAL	0.2<	ratioECA	L<0.5	

M. Almanza Soto and F.Corriveau CALICE Collaboration Meeting October 2022 Calorimeter Comparison --

	June 2011 Particle ID Cuts						
e^+	8 GeV	16 GeV	32 GeV	40 GeV	50 GeV	60 GeV	120
Number of hits	>50	>150	>200	>200	>250	>300	>50
Ratio(0-10)	>0.5	>0.5					
Ratio(0-15)			>0.5	>0.5	>0.5	>0.5	>0.5
π^+	8 GeV	16 GeV	32 GeV	40 GeV	50 GeV	60 GeV	120
Number of hits	>200	>200	>200	>200	>250	>300	>50
Ratio(0-10)	< 0.3	< 0.3					
Ratio(0-15)			<0.2	< 0.2	< 0.2	< 0.2	<0.2
μ^+	8 GeV	16 GeV	32 GeV	40 GeV	50 GeV	60 GeV	120
Number of hits	60 <h< td=""><td>its<120</td><td colspan="4">60<hits<130< td=""><td></td></hits<130<></td></h<>	its<120	60 <hits<130< td=""><td></td></hits<130<>				
Ratio(0-10)	0.1 <rat< td=""><td>tio10<0.4</td><td></td><td></td><td></td><td></td><td></td></rat<>	tio10<0.4					
Ratio(0-15)				0.2	2 <ratio15< td=""><td>< 0.5</td><td></td></ratio15<>	< 0.5	

April 2011	Particle 1	D Cuts fo	or Late sh	owering p	pions
π^+	12 GeV	16 GeV	25 GeV	32 GeV	40 G
Number of hits DHCAL	>120	>120	>120	>120	>15
Ratio(0-15)	< 0.15	< 0.2	< 0.2	< 0.2	< 0.2

+ containment cuts on number of cuts in the last layers of DHCAL

Before Alignment

Select muons from datasets Reject hits outside of main track (>4 hits/layer or at R>1 cm)

M. Almanza Soto and F.Corriveau - CALICE Collaboration Meeting October 2022 - Calorimeter Comparison

scatter 3D DHCAL

Alignment

Results vs run number: 1x 50GeV and 5x 60 GeV (not enough muons in 120 GeV data)

CALICE Collaboration Meeting October 2022 Calorimeter Comparison M. Almanza Soto and F.Corriveau

Beam energy	Run	Number of muon events
50~GeV	630081	792
	630090	47
	630091	13
60~GeV	630092	21
	630093	53
	630094	19
120 GeV	630095	3
120 Gev	630097	3

Global fits of the aligned tracks:

Position: X/Y: ±0.013 (stat) ±0.016 (syst) cm

Angles XY/YZ: ±0.013 (stat) ±0.064 (syst) °

i.e. a few % of cell size

DHCAL Linearity

 $N_{Hits} = p_0 E_{Beam}^{p_1}$

Period	pO	p1
June (DHCAL only)	25.9 ± 3.9	0.85 ± 0.
April (DHCAL+ECAL)	17.4 ± 2.4	0.87 ± 0.

.. will be used for calibration

M. Almanza Soto and F.Corriveau - CALICE Collaboration Meeting October 2022 - Calorimeter Comparison

Resolution

June 2011 data DHCAL only 40 GeV "electrons":

Resolution =Mean

M. Almanza Soto and F.Corriveau CALICE Collaboration Meeting October 2022 Calorimeter Comparison

Configurations for Pion Energy Resolution

#	Period	Setup	Sample
1	June	DHCAL	All
2	April	DHCAL+ECAL	Late sho
3	April	DHCAL+ECAL	Early sho
4	April	DHCAL+ECAL	Early sho

M. Almanza Soto and F.Corriveau - CALICE Collaboration Meeting October 2022 - Calorimeter Comparison

	DHCAL Calibration	Resolutio
wers	Linearity fit June	same?
owers	corrected by ECAL*	better?
owers	Energy Sum	best?

tsHits		7
	1863	7
	1350	
	0	
	11	
	68.67 / 32	
	0.0001751	
7.492e+0	4 ± 1.774e+03	
	1359 ± 4.1	
	160.8 ± 2.9	
000 umber of hits		
Energy		
	1863	
	48.61	
	6	
	204	
	132.9 / 75	
	4.3136-05	
	029.0 ± 32.1	
	37.88 ± 0.22	

 $\textbf{3.81} \pm \textbf{0.12}$

* ECAL online calibration for energy deposition in Silicon, completed by energy deposition in tungsten

50 GeV sample

M. Almanza Soto and F.Corriveau CALICE Collaboration Meeting October 2022

Energy Calibrated to Beam

Calorimeter Comparison

-

Resolutions per Dataset #1 #2

		Results April 2011			
Results Energy Resolution June 2011				DHCAL using Linearity fit	DHCAL using ECAL Correction
Beam Energy	e ⁺ Resolution	π^+ Resolution	Beam Energy	Resolution	Resolution
8 GeV	0.174 ± 0.004		12 GeV	0.210 ± 0.020	0.152 ± 0.009
16 GeV		0.212 ± 0.003	16 GeV	0.190 ± 0.004	0.151 ± 0.003
32 GeV	0.148 ± 0.001	0.153 ± 0.002	25 GeV	0.169 ± 0.004	0.142 ± 0.003
40 GeV	0.123 ± 0.001	0.141 ± 0.002	32GeV	0.168 ± 0.003	0.14 ± 0.002
50 CeV	0.120 ± 0.001	0.141 ± 0.002 0.125 ± 0.002	40 GeV	0.149 ± 0.002	0.127 ± 0.002
SUGev	0.120 ± 0.001	0.135 ± 0.002	50 GeV	0.148 ± 0.002	0.125 ± 0.002
60 GeV	0.126 ± 0.001	0.146 ± 0.002	60 GeV	0.141 ± 0.004	0.118 ± 0.002
120 GeV	0.119 ± 0.001	0.133 ± 0.002	120 GeV	0.134 ± 0.005	0.113 ± 0.004

M. Almanza Soto and F.Corriveau - CALICE Collaboration

#4

#3

Energy	Energy Resolution	$a(GeV^{\frac{1}{2}})$
V	0.1061 ± 0.0005	0.750 ± 0.004
V	0.095 ± 0.003	0.740 ± 0.006
eV	0.071 ± 0.001	0.780 ± 0.008

CALICE Collaboration Meeting October 2022 M. Almanza Soto and F.Corriveau Calorimeter Comparison

Pion Energy Resolution

Period and Method DHCAL April 2011 Linearity fit DHCAL June 2011 Linearity fit DHCAL April 2011 ECAL correction Si-W ECAL+DHCAL April 2011 Sum of energies

Compared periods DHCAL April 2011 Linearity fit DHCAL June 2011 Linearity fit DHCAL June 2011 Linearity fit DHCAL April 2011 ECAL correct DHCAL April 2011 ECAL correct to ECAL+DHCAL Sum of energy

M. Almanza Soto and F.Corriveau - CALICE Collaboration Meeting October 2022 - Calorimeter Comparison

	Energy Resolution PION				
Marker	50 GeV	60 GeV	120 GeV	Average	
	0.148	0.141	0.134	0.139	#2
•	0.135	0.146	0.133	0.138	#1
	0.125	0.118	0.113	0.119	#3
٠	0.106	0.097	0.072	0.092	#4

	Difference between energy resolutions					
	50 GeV	60 GeV	120 GeV	Average		
t to	-6%	4%	-1%	-1 %		
to ection	-7%	-1 9%	-1 5%	-14%		
ection gies	-15%	-18%	-36 %	-23%		

cumulative: ~40%

Conclusion and Outlook

The 2011 data of combined runs DHCAL and SiW-ECAL were analyzed. Several/severe caveats (e.g. limited energy range, particle ID).

- Muons could be used to align the detectors to ~0.02 cm in position and ~0.1 ° in angle.
- The presence of ECAL should improve the "pion"

DHCAL analysis plans: detailed better pion performance analysis from data and Monte-Carlo simulations (McGill and Beykent universities)

CALICE Collaboration Meeting October 2022 M. Almanza Soto and F.Corriveau Calorimeter Comparison

energy resolution. Better particle ID necessary.

M. Almanza Soto and F.Corriveau - CALICE Collaboration Meeting October 2022 - Calorimeter Comparison

M. Almanza Soto and F.Corriveau - CALICE Collaboration Meeting October 2022 - Calorimeter Comparison

?

