Neutron Identification with Plastic Scintillators

Sebastian Ritter CALICE Collaboration Meeting - 30.03.23

sebastian.ritter@uni-mainz.de

on behalf of: Antoine Laudrain, Asa Nehm and Asma Hadef

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

DETECTOR LAB

OUTLINE

- Motivation
- What is Neutron ID?
- Methodology
- Old setup + Results
- Improved setup + first Results
- Summary

MOTIVATION

02 2023

Can we use AHCAL-style design with pulse shape discrimination (PSD) to identify gammas and neutrons?

Case study: DUNE ND-GAr

- TPC measures charged particles
- ECAL can detect neutral particles but not identify (so far)
- Special plastic scintillators are optimized for Neutron ID (e.g. EJ-276G)

WHAT IS NEUTRON ID?

- Neutron ID: discrimination of incident neutrons by scintillation signature
- Classic process:
 - 1. Ionizing particles excite scintillator
 - 2. Light emission at deexcitation
- Neutron:
 - 1. Neutron scattering on nucleus
 - 2. Proton recoil
 - 3. Ionization

30 03 2023

Processes differ in photon timing

particle	Short component Decay const. [ns]	Long component 1 Decay const. [ns]	Long component 2 Decay const. [ns]
Gamma	13±1	110±10	800±80
Neutron	14±1	95±10	800±80

SETUP

How do we get neutrons and gammas?

- Neutrons from shielded AmBe source
- Cosmic muons used to emulate gammas (similar scintillation signature expected)
- SiPM-on-tile configuration similar to tiles on HBU
 - 30 x 30 x 3 mm EJ-276G tile
 - S13660-1325PE SiPM
- Signal amplified externally and readout by oscilloscope
- Full waveform saved -500 ns to 4500 ns

DATA

Muon + neutron samples

Peak height vs. number of tail peaks per event

Sebastian Ritter | CALICE CM Göttingen | PID with Plastic Scintillators

DISCRIMINANT

- Data runtime normalized
- Neutron data extracted by subtracting cosmics
- Discrimination efficiency determined based on resulting neutron shape

IGU

RESULTS

Three ways to perform Neutron ID:

- Histogram bin height method
 - Take log-likelihood for each ζ point
 - Bin height shows probability for each possibility
- Time distribution Method -
 - Fit exponential to tail peak distribution
 - Log-likelihood based on time distribution fits
- Combine both methods
 - Good separation achieved

DISCUSSION

- What is the left peak in neutron distribution?
 - Suspicion: gammas penetrating shielding
 - Validation: measurement without shielding
- Neutron distribution corrected
 - Looks good

30 03 2023

- Muons indeed look like gammas
 - Which is also good!

Next steps:

- Separation not good enough
 - SiPM upgrade to increase LY
 - \$13660-1325 to -3050 (active area increase x5.3)
- Tag neutrons with coincidence measurement of γ and n

IGL

NEW SETUP

- Two PID scintillator tiles on both sides of source to cover large solid angle to maximize coincidences
- Tile thickness increased to 5 mm to boost interaction rate
- Large muon veto on top and bottom
- Additional benefits:

30 03 2023

- Increase proton interaction rate
- Tag muons with veto

IGL

NEW SETUP

JG U

30.03.2023

FIRST DATA

30 03 2023

- Data taken for 20h with new setup
- About 2% coincidence events of γ and n

topPMT	х	х	х	-	х	-	-	-
topSiPM	х	-	х	х	-	-	х	-
bottomSIPM	х	х	х	х	х	х	х	х
bottomPMT	х	х	-	х	-	х	-	-
#hits	21	17	108	82	347	285	9424	591240

Sebastian Ritter | CALICE CM Göttingen | PID with Plastic Scintillators

JGU

NEUTRON TAGGING IN ACTION

- Coincidence data used
- Top plots:
 - Iow cut
 - unbiased neutron sample
- Bottom plots:
 - high cut

- unbiased gamma sample
- > Tagging works
 - clean determination of n + γ shapes

SUMMARY

- Neutron ID with EJ-276G scintillator is a success
- Coincident photon + neutron emission from AmBe source can be used to determine neutron scintillation signal
- Next step: Increase LY with larger SiPM to improve separation
- To be discussed: optimal realization in readout electronics (KLauS)

BACKUP

Sebastian Ritter | CALICE CM Göttingen | PID with Plastic Scintillators

30.03.2023

Defining a discriminant

Separate neutrons and cosmic muons first

9/16

2023-03-22

- Cosmic muons and gammas should have similar signal
- Information about amplitude of first peak and number of tail-peaks per event

Distinguish with log-likelihood ratios

Histogram bin height method

11/16

2023-03-22

- Take for each ζ point the respective bin
- Bin heights of neutrons and cosmics distribution as likelihoods to be either one
 - log(height neutron) log(height cosmic)

Distinguish with log-likelihood ratios

Time distribution method

12/16

2023-03-22

- Fit to the time distribution of the tail-peaks of the events
- Calculate <u>log-likelihood ratio of event</u> being neutron or cosmic by comparing to the time distribution fits

Combine log-likelihood ratio methods

2d combination

2023-03-22

13/16

• 2d histograms with time information on x- and bin height method on y-axis

Combine log-likelihood ratio methods

2d combination

2023-03-22

14/16

- 2d histograms with time information on x- and bin height method on y-axis
- Use 2d combination as new distributions for new log-likelihood ratio

method	Efficiency [%]			
LLR ζ	49.60			
LLR time tail-peaks	36.19			
Combination LLR – LLR	54.03			

