Agenda

- Scaling Models for increased pulse width
- Discussion of Single Tunnel Layouts
- Discussion of Cost reconciliation issues

Scaling Models for Increased Pulse Width: Klystron and Modulator

Klystron pulse width sensitive components

- Components assuming a linear scale:
 - Gun
 - Cathode loading and HV standoff
 - Collector
 - Pulse heating
 - Window/waveguide
 - Multipactor and pulse heating

Modulator pulse width sensitive components

- Modulator (all energy storage devices)
 - Assume to be linear wrt pulse width (35% of pulse forming cost)
 - Main cap bank (maybe should be sq. rt.?)
 - Main switch
 - Bouncer
 - Current Transformers
- Pulse transformer (10% of total Modulator Systems cost)
 - Already scaled by (1.6ms/4.5ms)^{1/2} (maybe should be linear?)
- "Misc Components" are currently 23% of the Modulator cost. What fraction of those components should be scaled linear and/or square root? 50%?

Cost Curves

Tunnel Layout

- 7500 mm
- 5200 mm
- XFEL

PLAN - 7.5M SINGLE TUNNEL

HLRF 8/10/06

Neubauer

PLAN - 5.2M

TESLA - A CHALLENGE IN PLANNING LARGE FACILITIES* Gerhard Neubauer

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

*Proceedings of the 7th International Workshop on Accelerator Alignment, SPring-8, 2002

HLRF 8/10/06

Fig. 5 New tunnel layout

Tunnel cross-section @ modules - Technical layout

XFEL Linac Tunnel Layout

DESY meeting with KEK ILC Delegation (March 7th 2005) Hans Weise / DESY

Accelerator is housed in a 5.2 m diameter tunnel ~ 15 - 30 m underground.

Klystrons in tunnel are connected to modulators in an external hall by 10kV pulse cables.

Preferred installation concept is suspension from tunnel ceiling

Cost Reconciliation

• RF distribution