ILC capabilities for the measurement of double Higgs production at 500 GeV.

Julie Munch Torndal January 12, 2023

Higgs self-coupling

• Establish Higgs mechanism experimentally \rightarrow reconstruct Higgs potential

Higgs potential in SM after SSB

$$V(h) = \frac{1}{2}m_{H}^{2}h^{2} + \lambda_{3}\nu h^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

with $\lambda_3^{SM} = \lambda_4^{SM} = \frac{m_H^2}{2\nu^2}$

Measure $oldsymbol{\lambda}$

ullet
ightarrow determine shape of Higgs potential

 $\bullet \to$ determine how the Universe froze in the EW sector, giving mass to gauge bosons, fermions, and the Higgs itself

BSM: deviations in $\lambda \rightarrow$ new physics in Higgs sector

Higgs self-coupling

Indirect access:

- through loop-order-corrections found from EFT fits
- single Higgs measurements reaching or exceeding the 1% level in e^+e^-
- large number of independent observables
- running at two different E_{cm} to lift degeneracies between λ and other Higgs couplings

See M.Peskin's talk

Direct access:

- through double-Higgs production $\frac{\Delta\lambda_{\rm HHH}}{\lambda_{\rm HHH}} = c \cdot \frac{\Delta\sigma_{\rm HHx}}{\sigma_{\rm HHx}}$
- → cross section measurement

Direct measuement of the Higgs self-coupling

Direct measuement of the Higgs self-coupling

The analysis from nearly a decade ago

DESY-THESIS-2016-027

Signature: 6-particle final state

Expected precision on the measurement:

$$\frac{\Delta\lambda}{\lambda} \propto \frac{\Delta\sigma}{\sigma}$$

Challenging because of small cross section

Precision reach

After full ILC running scenario ($HH \rightarrow bbbb + HH \rightarrow bbWW$)

 $\rightarrow~\Delta\lambda_{\rm SM}/\lambda_{\rm SM}~=10$ % when combined with additional running scenario at 1 TeV

Discovery potential clearly demonstrated

Strategy for further improvements

Better reconstruction tools now $\quad \rightarrow$

improve precision on $\sigma_{\rm ZHH}$ and $\lambda_{\rm SM}$!

Analysis strategy

Event reconstruction

Overlay removal

- $> \gamma \gamma \rightarrow$ low- p_T hadrons
- > Expect $\langle \textit{N}_{\textit{overlay}} \rangle = 1.05$ particles/event

Isolated lepton tagging

- > identify leptons for selection or rejection
 Jet reconstruction
- > cluster together remaining event

Flavor tagging

> look for b-jets

Event selection Cut-based preselection

- > ZHH $\rightarrow \ell\ell$ bbbb
- > ZHH $\rightarrow \nu \nu bbbb$
- > ZHH \rightarrow qqbbbb

Kinematic fitting

> hypotheses testing to separate ZHH from ZZH background

Event selection

> based on MVAs

Julie Munch Torndal | HH @ ILC500 | January 12, 2023 | Page 6

Strategy for improving the Higgs self-coupling measurement at ILC

State-of-the-art projections at ILC performed 6-9 years ago Meanwhile \rightarrow significant improvements in our analysis tools

Overlay removal

 $\gamma \gamma \rightarrow \text{low-}p_T \text{ hadrons}$ Expect $\langle N_{overlay} \rangle = 1.05$ event @ 500 GeV

Better modelling of the $\gamma\gamma$ overlay Advanced overlay removal strategy

Isolated lepton tagging

Optimised for $\ell = \{e, \mu\}$

💾 Dedicated search for aus

```
For \varepsilon_{\tau} \sim \varepsilon_{e,\mu}

\rightarrow 8\% relative improvement in

\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH}
```

Flavor tagging

- Improve b-tagging efficiency
 - For 5% relative improvement in $\varepsilon_{b\text{-tag}} \rightarrow 11\%$ relative improvement in $\Delta \sigma_{\text{ZHH}} / \sigma_{\text{ZHH}}$

Error parametrisation in kinematic fitting

Mass resolution \propto jet energy resolution

Errorflow: Energy resolution parametrisation for individual jets

Strategy for improving the Higgs self-coupling measurement at ILC

State-of-the-art projections at ILC performed 6-9 years ago Meanwhile \rightarrow significant improvements in our analysis tools

Overlay removal

 $\gamma \gamma \rightarrow \text{low-}p_T \text{ hadrons}$ Expect $\langle N_{overlay} \rangle = 1.05$ even

Better modelling of the γ
 Advanced overlay removal

Isolated lepton tagging

Optimised for $\ell = \{e, \mu\}$

$\stackrel{{\scriptstyle ext{tot}}}{=}$ Dedicated search for aus

For $\varepsilon_{\tau} \sim \varepsilon_{e,\mu}$ $\rightarrow 8\%$ relative improvement in $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH}$

Improvement in reconstruction tools has the potential to bring the sensitivity to **better than 20%**

Error parametrisation in kinematic fitting Mass resolution \propto jet energy resolution

 Errorflow: Energy resolution parametrisation for individual jets

nt in ε_{b-tag}

nt in $\Delta \sigma_{ZHH} / \sigma_{ZHH}$

DESY-THESIS-2016-027

Overlay removal Event reconstruction

- $\gamma\gamma \rightarrow \text{low-}p_T$ hadrons
- cluster into very forward beam jets and remove \rightarrow uncover original event

Better modelling of the $\gamma\gamma$ overlay

- Previous: $\langle N_{overlay} \rangle = 1.7$ particles/event \rightarrow pessimistic results
- Now: $\langle N_{\textit{overlay}} \rangle = 1.05 \text{ particles/event} \rightarrow \text{more}$ realistic results
- 😬 Advanced overlay removal strategy
- More detailed study needed to determine whether more advanced removal strategy is needed

Isolated lepton tagging

Event reconstruction

Step 1: identify all isolated leptons

- based on a MVA approach
- optimised for $\ell=e,\mu$

Step 2: pair selection

- closest to Z-mass + opposite charge requirement
- followed by BS/FSR recovery

• Separate method for tau lepton reconstruction

Tau lepton reconstruction Event reconstruction

Reconstruction using impact parameters

- > requires accurate au vertex + precise measurement of decay products
- > parametrisation only for single neutrino production

 $>~e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ simulated in ILD

Jet reconstruction Event reconstruction

Jet clustering

- jet-finding ambiguities from high multiplicities in ZHH
- degrades mass resolutions

Perfect jet clustering

- $\rightarrow \sim 40 \rm \%$ relative improvement in $\Delta \sigma_{\rm ZHH}/\sigma_{\rm ZHH}$
- For now, Durham algorithm used

$$d_{ij} = \min(\mathbf{E}_i^2, \mathbf{E}_j^2)(1 - \cos \theta_{ij})$$

Flavor tagging Event reconstruction

Improve b-tagging efficiency

Example @ 80% signal efficiency:

	DBD	new	ATLAS
1-eff(c)	90%	95%	75%
Rejection factor	10	20	4

Better signal efficiencies observed in preselections

Preselection in lepton channel

PRELIMINARY

Selection	$\ell\ell HH$ (new)	$\ell\ell HH$ (old)	$\epsilon_{sig}~({ m new})$	$\epsilon_{sig}~(\mathrm{old})$
Initial	41.17 ± 0.23	40.51	1.0	1.0
$\#\ell_{ISO} >= 2$	26.99 ± 0.19	25.20 ± 0.07	0.66	0.62
$ M_{\ell\ell} - M_Z < 40 \mathrm{GeV}$	24.98 ± 0.18	24.00 ± 0.07	0.61	0.59
$ M_{jj} - M_H < 80 \text{ GeV}$	24.12 ± 0.18	22.50 ± 0.06	0.59	0.56
$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	22.71 ± 0.17	22.40 ± 0.06	0.55	0.55
$p_{T} < 70 { m GeV}$	21.67 ± 0.17	21.40 ± 0.06	0.53	0.53
thrust < 0.9	21.65 ± 0.17	21.40 ± 0.06	0.53	0.53

Preselection in neutrino channel

PRELIMINARY

Selection	u u HH (new)	u u HH (old)	$\epsilon_{sig}~({ m new})$	$\epsilon_{bkg}~(\mathrm{old})$
Initial	89.8 ± 0.6	80.14	1.0	1.0
$\#\ell_{ISO}=0$	70.9 ± 0.6	62.4 ± 0.1	0.79	0.78
$ M_{jj} - M_H > 80 { m GeV}$	69.0 ± 0.5	61.0 ± 0.1	0.77	0.76
bmax3 > 0.2	55.1 ± 0.5	28.2 ± 0.1	0.61	0.35
$60~{\rm GeV} < M_{jj} < 180~{\rm GeV}$	53.2 ± 0.5	27.3 ± 0.1	0.59	0.34
$10~{\rm GeV} < p_T < 180~{\rm GeV}$	52.5 ± 0.5	27.0 ± 0.1	0.59	0.34
m thrust < 0.9	52.2 ± 0.5	26.8 ± 0.1	0.58	0.33
$E_{\rm vis} < 400 {\rm ~GeV}$	51.8 ± 0.5	26.6 ± 0.1	0.58	0.33
M(HH) > 220 GeV	49.0 ± 0.5	25.7 ± 0.1	0.55	0.32

Preselection in neutrino channel

PRELIMINARY

Selection	u u HH (new)	u u HH (old)	$\epsilon_{sig}~({ m new})$	$\epsilon_{bkg}~(\mathrm{old})$
Initial	89.8 ± 0.6	80.14	1.0	1.0
$\#\ell_{ISO}=0$	70.9 ± 0.6	62.4 ± 0.1	0.79	0.78
$ M_{jj} - M_{II} > 80 \text{ GeV}$	69.0 ± 0.5	61.0 ± 0.1	0.77	0.76
bmax3 > 0.2	55.1 ± 0.5	28.2 ± 0.1	0.61	0.35
$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	53.2 ± 0.5	27.3 ± 0.1	0.59	0.34
$10~{ m GeV} < p_{T} < 180~{ m GeV}$	52.5 ± 0.5	27.0 ± 0.1	0.59	0.34
thrust < 0.9	52.2 ± 0.5	26.8 ± 0.1	0.58	0.33
$E_{\rm vis} < 400 { m ~GeV}$	51.8 ± 0.5	26.6 ± 0.1	0.58	0.33
M(HH) > 220 GeV	49.0 ± 0.5	25.7 ± 0.1	0.55	0.32

• $\nu\nu$ HH: 74 % relative improvement after b-tag cut

Preselection in hadron channel

PRELIMINARY

Selection	qqHH (new)	qqHH~(old)	$\epsilon_{sig}~(\mathrm{new})$	$\epsilon_{sig}~(\mathrm{old})$
Initial	274.1 ± 2.7	273.1	1.0	1.0
$\#\ell_{ISO}=0$	$216.4 \hspace{0.2cm} \pm \hspace{0.2cm} 2.4 \hspace{0.2cm}$	$214.0 \hspace{0.2cm} \pm \hspace{0.2cm} 0.3 \hspace{0.2cm}$	0.79	0.78
btag > 0.16	$138.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9 \hspace{0.2cm}$	$81.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$	0.51	0.30
$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	$132.2 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8 \hspace{0.2cm}$	$78.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$	0.48	0.29
$p_{T} < 70 { m ~GeV}$	$129.4 \pm 1.8 $	$77.4 \pm 0.2 $	0.47	0.28
thrust < 0.9	$129.4 \pm 1.8 $	$77.3 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$	0.47	0.28

Preselection in hadron channel

PRELIMINARY

	Selection	qqHH (new)	qqHH (old)	$\epsilon_{sig}~({ m new})$	$\epsilon_{sig}~(\mathrm{old})$
	Initial	274.1 ± 2.7	273.1	1.0	1.0
	$\#\ell_{ISO} = 0$	$216.4 \hspace{0.2cm} \pm \hspace{0.2cm} 2.4 \hspace{0.2cm}$	$214.0 \pm 0.3 $	0.79	0.78
<	btag > 0.16	$138.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9 \hspace{0.2cm}$	$81.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$	0.51	0.30
	$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	$132.2 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8 \hspace{0.2cm}$	$78.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$	0.48	0.29
	$p_{T} < 70 { m GeV}$	129.4 ± 1.8	$77.4 \pm 0.2 $	0.47	0.28
	$\mathrm{thrust} < 0.9$	$129.4 \pm 1.8 $	$77.3 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$	0.47	0.28

• qqHH: 70 % relative improvement after b-tag cut

Kinematic fitting

Exploit well-known initial state in e^+e^- colliders for:

- > Improve kinematics, e.g. mass resolution
- > Hypothesis testing
- > Jet-pairing

 χ^2 -function to minimise:

$$L(y) = \Delta y^{T} \mathbf{V}(y)^{-1} \Delta y + 2 \sum_{k=1}^{m} \lambda_{k} f_{k}(\mathbf{a}, y)$$

- y: set of measured parameters
- *a*: set of unmeasured parameters
- Δy : corrections to y
- $\mathbf{V}(y)$: covariance matrix for y
- *f_k*: set of constraints expressing the fit model
- λ_k: lagrange multipliers

ErrorFlow Kinematic fitting

Parametrize sources of uncertainties for *individual* jets:

 $\sigma_{E_{jet}} = \sigma_{Det} \oplus \sigma_{Conf} \oplus \sigma_{\nu}$ $\oplus \sigma_{Clus} \oplus \sigma_{Had} \oplus \sigma_{\gamma\gamma}$

- > σ_{Det} : Detector resolution
- > σ_{Conf} : Particle confusion in Particle Flow Algorithm
- $> \sigma_{\nu}$: Neutrino correction

Hypothesis testing Kinematic fitting

• Pre-fitted dijet-masses show large overlap between signal (*ZHH*) and background (*ZZH*)

Calculate χ^2 for ZHH and ZZH hypotheses for both ZHH and ZZH events ZHH hypothesis:

- 4-momentum conservation
- 2 \times Higgs mass constraints

ZZH hypothesis:

- 4-momentum conservation
- Higgs mass constraint + Z mass constraint

Hypothesis testing **Kinematic fitting**

• Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH)

• Hypothesis testing showed good separation for low χ^2 -values of signal (*ZHH*) and background (ZZH) in previous analysis DESY-THESIS-2016-027 DESY.

Hypothesis testing Kinematic fitting

 Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH)

Precision on Higgs self-coupling

collider	indirect- <i>h</i>	direct-hh
HL-LHC	100-200%	50%
ILC250	_	_
ILC500	58%	20%*
ILC1000	52%	10%
CLIC380	_	_
CLIC1500	_	36%
CLIC3000	_	9%
FCC-ee 240	_	_
FCC-ee 240/365	44%	_
FCC-ee (4 IPs)	27%	_
FCC-hh	_	3.4-7.8%

[arXiv:1910.00012, arXiv:2211.11084]

50% sensitivity: establish that $\lambda_{HHH} \neq 0$ at 95% CL **20% sensitivity:** 5σ discovery of the SM λ_{HHH} coupling **5% sensitivity:** getting sensitive to quantum corrections to Higgs potential

Precision on Higgs self-coupling

collider	indirect- <i>h</i>	direct- <i>hh</i>
HL-LHC	100-200%	50%
ILC250	_	_
ILC500	58%	20%*
ILC1000	52%	10%
CLIC380	_	_
CLIC1500	_	36%
CLIC3000	_	9%
FCC-ee 240	_	_
FCC-ee 240/365	44%	_
FCC-ee (4 IPs)	27%	_
FCC-hh	_	3.4-7.8%

[arXiv:1910.00012, arXiv:2211.11084]

ONLY VALID FOR $\lambda = \lambda_{SM}$

Higgs self-coupling precision dependent on value of λ itself

Precision as a function of new physics

The two channels provide complementary information

- ZHH gives stronger constraints on $\lambda/\lambda_{SM}>1$
- $\nu \bar{\nu} HH$ gives stronger constraints on $\lambda/\lambda_{SM} < 1$

• LHC gives stronger constraints on $\lambda/\lambda_{SM} < 1$

Precision on Higgs self-coupling with new physics

Precision on Higgs self-coupling with new physics

Conclusion

- Discovery potential of ILC500 clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to **better than 20%**
- Update to the state-of-the-art projections for ILC500 is underway!
- Complementarity of ILC500 and ILC1000 to ensure at least 10-15% precision for any value of λ

Conclusion

- Discovery potential of ILC500 clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to **better than 20%**
- Update to the state-of-the-art projections for ILC500 is underway!
- Complementarity of ILC500 and ILC1000 to ensure at least 10-15% precision for any value of λ

Thank you.