Electroweak precision test of axion-like particles

In collaboration with Motoi Endo (KEK)

Based on [hep-ph] 2302.11377

IDT-WG3-Phys Open Meeting (2023/03/10)

Masashi Aiko (KEK)

Standard Model

We have problems that cannot be explained within the SM. Baryon asymmetry of the universe, Dark matter, Neutrino tiny mass, etc. SM must be extended to solve these problems.

Axion-like particles

- Pseudo-scalar particles (not necessarily solve the strong CP problem) \bullet They often appear as pseudo-Nambu-Goldstone bosons associated with
- (approximate) global symmetry.
- Motivated as a candidate for dark matter, solution of various experimental \bullet anomalies, and so on.

Lagrangian

ALP couples to $SU(2)_L$ and $U(1)_Y$ gauge bosons.

$$\mathcal{L}_{ALP} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 - c_{WW} \frac{a}{f_a} W^a_{\mu\nu} \widetilde{W}^{a\mu\nu} - c_{BB} \frac{a}{f_a} B_{\mu\nu} \widetilde{B}^{\mu\nu}$$

Ε

The ALP couplings are controlled by two independent parameters. We study the ALP model by the electroweak precision test (EWPT).

ALP model

Electroweak precision test

Z-pole observables are precisely measured at the LEP. SM is consistent with EWPT except for the recent CDF measurement.

SM vs CDF: ~ 7σ

We perform EWPT both w/ and w/o CDF result.

CDF, Science 376 (2022)

	Measurement
$m_Z [\text{GeV}]$	91.1875 ± 0.0021
$\Gamma_Z \ [\text{GeV}]$	2.4955 ± 0.0023
$\int \sigma_h^0 [\mathrm{nb}]$	41.4802 ± 0.0325
R_ℓ^0	20.7666 ± 0.0247
$ig \qquad A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010
R_b^0	0.21629 ± 0.0006
R_c^0	0.1721 ± 0.0030
$ig A^{0,b}_{ m FB}$	0.0996 ± 0.0016
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035
$ $ \mathcal{A}_b	0.923 ± 0.020
$ $ \mathcal{A}_c	0.670 ± 0.027
	$\begin{array}{c c} m_Z \; [\text{GeV}] \\ \Gamma_Z \; [\text{GeV}] \\ \sigma_h^0 \; [\text{nb}] \\ \sigma_h^0 \; [\text{nb}] \\ R_\ell^0 \\ A_{\text{FB}}^{0,\ell} \\ R_b^0 \\ R_c^0 \\ R_F^0 \\ R_F^0 \\ A_F^0 \\ A_C \\$

Oblique correction

ALP contributes to the EWPOs via vacuum polarization.

the oblique parameters, S, T and U.

$$S = 16\pi \operatorname{Re} \left[\Pi_{T,\gamma}^{3Q}(m_Z^2) - \Pi_{T,Z}^{33}(0) \right]$$
$$T = \frac{4\sqrt{2}G_F}{\alpha} \operatorname{Re} \left[\Pi_T^{33}(0) - \Pi_T^{11}(0) \right]$$
$$U = 16\pi \operatorname{Re} \left[\Pi_{T,Z}^{33}(0) - \Pi_{T,W}^{11}(0) \right]$$

EWPT can be performed only by using STU parameters if other effects are negligibly small.

New physics contributions via vacuum polarization can be parametrized by

Peskin, Takeuchi PRD46 (1992) Hagiwara, Matsumoto, Haidt, Kim, Z. Phys. C64 (1994)

$$\Pi_{T,V}^{ab}(k^2) = \frac{\Pi_T^{ab}(k^2) - \Pi_T^{ab}(m_V^2)}{k^2 - m_V^2}$$

Previous works

ALP is assumed much lighter than Z boson Bauer, Neubert, Thamm, JHEP12 (2017)

$$\begin{split} \alpha S &= -\frac{2c_W^2 s_W^2 m_Z^2}{\pi^2} \frac{c_{WW} c_{BB}}{f_a^2} \left(\ln \frac{m_Z^2}{\Lambda^2} + 1 \right) \\ \alpha T &= 0 \\ \alpha U &= -\frac{2s_W^4 m_Z^2}{3\pi^2} \frac{c_W^2 m_W^2}{f_a^2} \left(\ln \frac{m_Z^2}{\Lambda^2} + \frac{1}{3} + \frac{2c_W^2}{s_W^2} \right) \end{split}$$

ALP was tested using global fit results for the STU parameters.

It was concluded that "the interpreta ALP is just marginally acceptable"

Lu, Wu, Wu, Zhu, PRD106 (2022)

It was concluded that "the interpretation of the W-boson mass excess with

Yuan, Zu, Feng, Cai, Fan, 2204.04183

In previous works, other effects are assumed to be negligibly small. However, this assumption is not valid in the ALP model.

 $Z \rightarrow a\gamma$

$$\Gamma_{a\gamma} \equiv \Gamma(Z \to a\gamma) = \frac{m_Z^3}{96\pi} g_{aZ\gamma}^2 \left(1 - \frac{1}{2}\right)$$

This decay mode contributes to the total width of Z boson. Since this is tree level, the effect is not negligible.

Z-boson decay

Beyond STU

Radiative corrections to gauge couplings via vacuum polarization

 $\bar{\alpha}(m_Z^2) = \alpha \left\{ 1 - \operatorname{Re} \left[\Pi_{T,\gamma}^{\gamma\gamma} (x) \right] \right\}$ $\bar{g}_Z^2(m_Z^2) = \bar{g}_Z^2(0) \left\{ 1 - \text{Re} \left[\Pi_Z^2 \right] \right\}$ $\bar{g}^2(m_W^2) = \bar{g}^2(0) \{1 - \text{Re} [\Pi]\}$

Z-pole observables

$$\Gamma(Z \to f\bar{f}) = N_C^f \frac{G_F m_Z^3}{6\sqrt{2}\pi} \left[|g_{V,f}|^2 + |g_{A,f}|^2 \right]$$

$$\begin{split} &(m_Z^2) - \Pi_{T,\gamma}^{\gamma\gamma}(0) \Big] \Big\} \equiv \alpha \left(1 + \Delta \alpha \right) \\ & \{ T_{T,Z}^{ZZ}(m_Z^2) - \Pi_{T,Z}^{ZZ}(0) \Big] \Big\} \equiv g_Z^2(0) \left(1 + \Delta_Z \right) \\ & \{ W_{T,W}^W(m_W^2) - \Pi_{T,W}^{WW}(0) \Big] \Big\} \equiv g^2(0) \left(1 + \Delta_W \right) \end{split}$$

* Formulae for the other EWPOs are presented in the paper.

$$\begin{cases} g_{V,f} = \sqrt{\rho_Z} \left[I_3^f - 2 Q_f \bar{s}^2(m_Z^2) \right], \ g_{A,f} = \sqrt{\rho_Z} I_3^f \\ \bar{s}^2(m_Z^2) = s_W^2 \left[1 + \frac{c_W^2}{c_W^2 - s_W^2} \left(\Delta \alpha - \alpha T \right) + \frac{\alpha S}{4s_W^2(c_W^2 - s_W^2)} \right] \\ \rho_Z = 1 + \alpha T + \Delta_Z \end{cases}$$

Can we neglect $\Delta \alpha$, Δ_Z and Δ_W ?

ALP contributions

Light ALP

$$\alpha S = -\frac{2c_W^2 s_W^2 m_Z^2}{\pi^2} \frac{c_{WW} c_{BB}}{f_a^2} \left(\ln \frac{m_Z^2}{\Lambda^2} + \frac{1}{\Lambda^2} - \frac{2s_W^4 m_Z^2}{3\pi^2} \frac{c_W^2 W}{f_a^2} \left(\ln \frac{m_Z^2}{\Lambda^2} + \frac{1}{3} + \frac{2}{\Lambda^2} + \frac{1}{3} + \frac{2}{\Lambda^2} \right) \right)$$

$$\Delta \alpha = \frac{m_Z^2}{96\pi^2} \left[g_{a\gamma\gamma}^2 \left(\ln \frac{m_Z^2}{\Lambda^2} + \frac{11}{3} \right) + g_{aZ}^2 + \frac{1}{\Lambda^2} + \frac{1}{3} \right) \right]$$

$$\Delta_W = \frac{m_W^2}{96\pi^2} g_{aWW}^2 \left(\ln \frac{m_W^2}{\Lambda^2} + \frac{4}{3} \right)$$
* Form

New contributions are comparable to S and U. \rightarrow We cannot neglect them.

nulae valid for any ALP mass are provided in the paper.

EWPT in ALP model

- 1. Evaluate the probability distribution from the likelihood
- 3. Determine 68% and 95% region

2. Normalize the probability distribution on the model-parameter plane

Impact of new contributions

ALP is much lighter than Z boson

New contributions, especially $\Gamma(Z \rightarrow a\gamma)$, significantly affect the results

EWPT with light ALP ($m_a = 4$ GeV)

Flavor experiments tightly constrain for $m_a \leq 4.8$ GeV.

EWPT with light ALP ($m_a = 5$ GeV)

Light ALP can be consistent with EWPT for m_W^{PDG} , but not for m_W^{CDF} .

ALP can be consistent with EWPT both for m_W^{PDG} and m_W^{CDF} if ALP is heavy and $g_{a\gamma\gamma} \approx 0$.

EWPT with $m_a > m_Z$

Black: indirect prediction m_W is determined by global fits w/o including the m_W in the likelihood Red: theoretical value for which m_W is included in the likelihood

Mass dependence of EWPOs global fit

ALP improves EWPOs global fit if $m_a > 160$ (500) GeV for m_W^{PDG} (m_W^{CDF}).

MA, Endo, 2302.11377

What is new

We performed the global fit of EWPOs in the ALP model.

The following effects, which are neglected in previous works, are included

- Z-boson decays into ALP
- Corrections beyond STU parameters.

In addition, relevant flavor and collider experiments are taken into account.

What we found

Analysis only with STU parameters is not valid in the ALP model.

- The EWPOs global fit can be improved against the SM if ALP is heavier than 160 GeV.
- To explain the CDF result of W-boson mass, ALP should be heavier than 500 GeV.

Back up slides

CDF measurement of W-boson mass

CDF measurement of W-boson mass

SM prediction

$m_W^{\rm SM} = 80.3552 \pm 0.0055 \,\,{\rm GeV}$

World Average w/o CDF

 $m_W^{\rm PDG} = 80.377 \pm 0.012 \,\,{\rm GeV}$

CDF 2022

 $m_W^{\rm CDF} = 80.4335 \pm 0.0094 \,\,{\rm GeV}$

m_w [GeV]

Flavor constraints

$$B \rightarrow Ka$$

$$\Gamma(B^{+} \to K^{+}a) = \frac{m_{B}^{3}}{64\pi} |\Delta g_{abs}^{\text{eff}}|^{2} f_{0}(m_{a}^{2})\lambda_{Ka}^{1/2} \left(1 - g_{ad_{i}d_{j}}^{\text{eff}}\right) = -\frac{3}{4s_{W}^{2}} \frac{\alpha}{4\pi} g_{aWW} \sum_{q=u,c,t} V_{qi} V_{qj}^{*}$$

Flavor-violating decay into ALP occurs via the W-boson exchange diagram.

 $B \rightarrow Ka, a \rightarrow \gamma\gamma$: constraint for 0.175 < m_a < 4.78 GeV $B \rightarrow Ka, a \rightarrow \mu^+\mu^-$: constraint for 0.250 < m_a < 4.70 GeV

B-meson decay

Collider constraints

ALP lighter than Z boson

$$a \rightarrow \gamma \gamma$$

Bound from $e^+e^- \rightarrow a\gamma$, $a \rightarrow \gamma\gamma$

On-shell Z exchange: $aZ\gamma$ coupling Off-shell γ , Z exchange: $aZ\gamma$ and $a\gamma\gamma$ couplings

 $a \rightarrow jj$

On-shell Z exchange: $aZ\gamma$ coupling Sensitive even if $g_{a\gamma\gamma} = 0$

ALP heavier than Z boson

 $a \rightarrow \gamma \gamma$

Bound from pp, PbPb $\rightarrow \gamma\gamma \rightarrow a^* \rightarrow \gamma\gamma$ $g_{a\gamma\gamma}$ is tightly constrained.

$$a \rightarrow Z\gamma$$

Bound from $(pp \rightarrow)q\bar{q} \rightarrow Z^* \rightarrow a\gamma, a \rightarrow Z\gamma \rightarrow \nu\bar{\nu}\gamma$ Constraint for $m_a < 500 \text{ GeV}$

Global fit results

$$\Lambda = f_a$$

Cutoff dependence