HERISTAN Ryuichiro Kitano (KEK)

Based on 2201.06664, Yu Hamada (KEK), RK, Ryutaro Matsudo (KEK -> NTU), Hiromasa Takaura (KEK -> YITP), Mitsuhiro Yoshida (KEK)

Also, study in progress with Koji Nakamura (KEK), Sayuka Kita (Tsukuba U.), Toshiaki Kaji (Waseda U.), Taiki Yoshida (Waseda U.), Kohei Yorita (Waseda U.), Kåre Fridell (KEK), Ryoto Takai (Sokendai)

talk@ILC IDT-WG3, April 20, 2023

Clearly, we need next generation colliders.

- 1. We must investigate the form of the Higgs potential by the observation of self-interactions.
- 2. We must check the possibility that one can actually produce dark matter artificially.
- 3. We must look for new physics at least up to about 10TeV (~ a loop factor higher than the EW scale).

We cannot stop here.

Today, I talk about possibly a realistic scenario of μ^+ based colliders.

As you know, the most important (difficult) part of muon colliders is to obtain enough luminosity for particle physics.

Luminosity

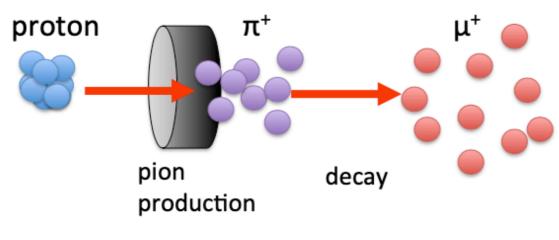
$$\mathcal{L} = rac{N_{
m beam1}N_{
m beam2}}{4\pi\sigma_x\sigma_y}f_{
m rep}$$

We need a large number of muons and/or narrow beams.

N_{beam}=10¹⁰ (1.6nC) / bunch

 $\sigma=1\mu m$

 $f_{rep}=1MHz$


We want ab⁻¹ level luminosity for physics (HL-LHC, ILC)

 σ is the most difficult part. The **cooling** is the key.

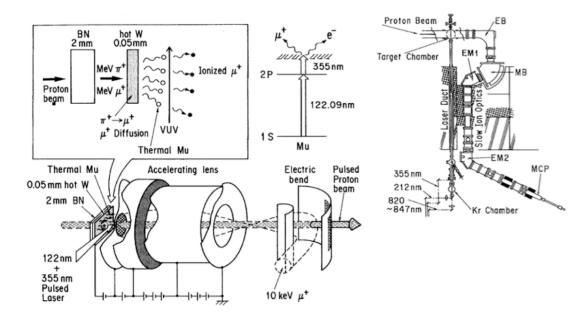
Muon beam

Conventional muon beam

Too much spread.

emittance ~1000π mm •mrad = π mm

Strong focusing Muon loss BG π contamination

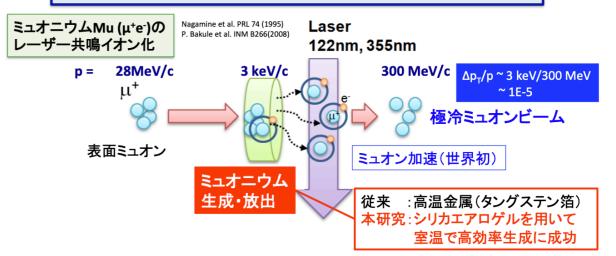

Taken from Mibe-san's lecture slide

Muon cooling

There is a rather mature(?) technology works for μ^+ .

Ultracold muon technology

[K.Nagamine et al. 1995]

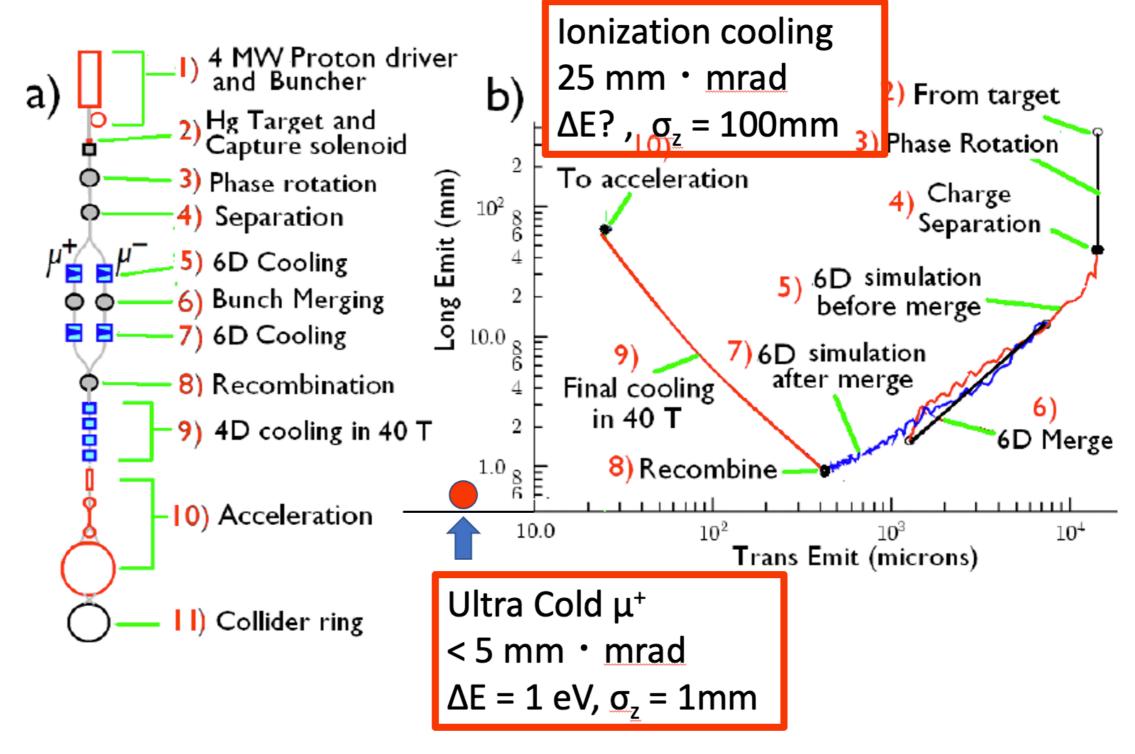

This has been the key technology for the J-PARC muon g-2/EDM experiment.

ミュオンg-2/EDMと極冷ミュオンビーム

J-PARCで行う新しいミュオンg-2/EDM精密測定

www.g-2.kek.jp

- BNLが報告した標準模型からのズレ(3σ)の検証(0.1ppm)
- 全く新しいコンセプトで主要系統誤差要因を払拭
 - ゼロ電場
 - ・コンパクトな蓄積磁石(0.7 m << 14 m)
- 通常に比べてエミッタンスが1/1000程度小さいミュオンビーム (極冷ミュオンビーム)が必須



Mibe-san's slide

Looks like a low-emittance µ+ beam is already there!

Also, polarized beam is possible. (non-trivial though)

Emittance: Ionization cooling vs Ultra Cold

μTRISTAN

 $\mu^+e^-/\mu^+\mu^+$ collider with 1TeV μ^+ beam.

PTEP

Prog. Theor. Exp. Phys. **2022** 053B02(16 pages) DOI: 10.1093/ptep/ptac059 30GeV e⁻ / 1TeV μ^+ : Higgs factory, \sqrt{s} =346GeV 1TeV μ^+ / 1TeV μ^+ : new physics search, \sqrt{s} =2TeV

μ TRISTAN

Yu Hamada¹, Ryuichiro Kitano^{1,2}, Ryutaro Matsudo¹, Hiromasa Takaura^{1,*}, and Mitsuhiro Yoshida^{2,3}

¹KEK Theory Center, Tsukuba 305-0801, Japan

²Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801, Japan

³KEK Accelerator Department, Tsukuba 305-0801, Japan

*E-mail: takaura.phys@gmail.com

Received January 21, 2022; Revised March 18, 2022; Accepted March 28, 2022; Published March

The ultra-cold muon technology developed for the muon g-2 experiment vides a low-emittance μ^+ beam which can be accelerated and used for experiments. We consider the possibility of new collider experiments by μ^+ beam up to 1 TeV. Allowing the μ^+ beam to collide with a high-intensit TRISTAN energy, $E_{e^-}=30\,\text{GeV}$, in a storage ring with the same size as T cumference of 3 km), one can realize a collider experiment with the center $\sqrt{s}=346\,\text{GeV}$, which allows the production of Higgs bosons through vector processes. We estimate the deliverable luminosity with existing accelerator be at the level of $5\times10^{33}\,\text{cm}^{-2}\,\text{s}^{-1}$, with which the collider can be a good I tory. $\mu^+\mu^+$ colliders up to $\sqrt{s}=2\,\text{TeV}$ are also possible using the same standard the capability of producing the superpartner of the muon up to TeV

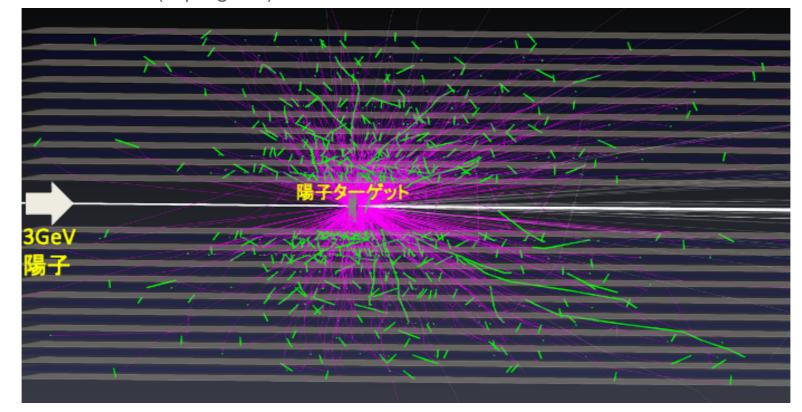
.....

Proton LINAC (500 MeV) RCS : 3 GeV x 6.6 μ C x 2-bunch x 50 Hz = 2 MW Pion production ring: $100 \text{ nC/}\pi/(\triangle \text{Ep=75[MeV](10mm)})$ compression x 2-bunch x 40-turns x 50 Hz $(6.6\mu C \times 2-bunch \times 75 \text{ MeV} \times 40-turns \times 50 \text{ Hz} = 2 \text{ MW})$ Booster ring (up to 1 TeV) RF **Target** 1 TeV x $(7.2nC=>3.6nC)/\mu$ x 40 bunch x 50Hz = 9 MW 30 GeV muon LINAC ~ 3 km Laser R=1 km (B=3 T max)16 turns ~ 700μs Triple ring $(\mu^{+}, \mu^{+}, e^{-})$ 30 GeV muon LINAC ~ 3 km 3 km Main ring $\tau_{ij} = 20$ ms (2000 turns) $\mu^{+}\mu^{+}$: 1 TeV, 2.2 nC x 1 TeV,2.2 nC x 20bunch μ^+e^- : 1 TeV, 2.2 nC x 30 GeV,10 nC x 40bunch

Fig. 1. Conceptual design of the $\mu^+e^-/\mu^+\mu^+$ collider.

How many cold muons?

1/(20ms) where 20ms is the lifetime of the 1TeV muon


J-PARC like proton driver: $6.6 \mu \text{C} * 50 \text{ Hz} * 2 \text{ bunches} = 4.1 \times 10^{15} \text{ protons/s}$ realistic

pion production target: 40 hits/bunch 0.016 π +/proton 2.6 x 10¹⁵ π +/s maybe realistic

pion stopping target: 0.5 stopping efficiency * 0.07 muons/ π + 9 x 10¹³ μ +/s maybe challenging

10⁵ larger than J-PARC MLF.
Super muon factory!

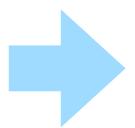
simulation: (in progress)

pink: pion

green: muon

Luminosity?

J-PARC like proton driver: $6.6 \,\mu\text{C} * 50 \,\text{Hz} * 2 \,\text{bunches} = 4.1 \,\text{x} \; 10^{15} \,\text{protons/s}$


pion production target: 40 hits/bunch $0.016 \,\pi^+/\text{proton}$ $2.6 \times 10^{15} \, \pi$ +/s

0.5 stopping efficiency * 0.07 muons/ π + 9 x 10¹³ µ+/s pion stopping target:

6.6 μC x 2 x 0.016 x 0.5 x 0.07 ~ 7 nC / bunch ~ 4 x 10¹⁰ muons/bunch

Fig. 1. Conceptual design of the $\mu^+e^-/\mu^+\mu^+$ collider.

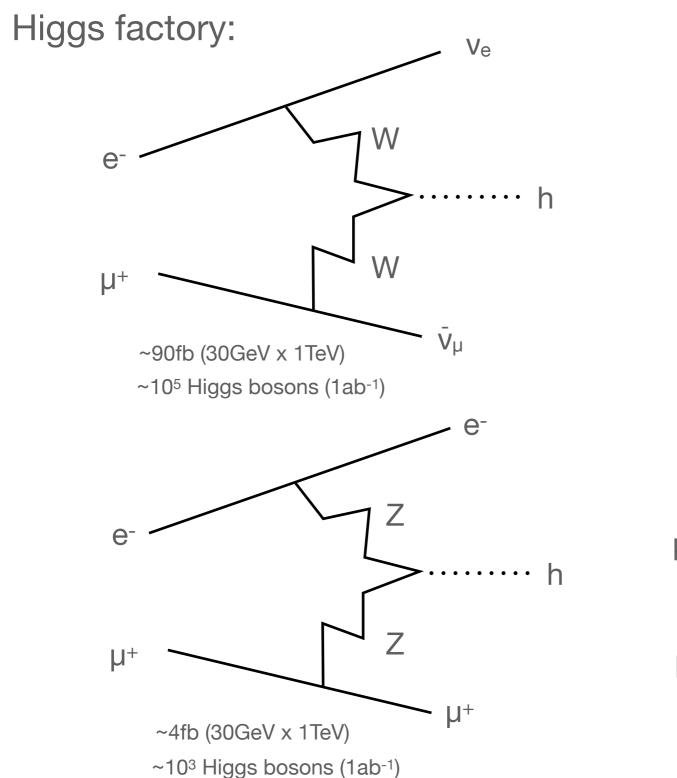
$$\mathcal{L}_{\mu^+e^-} = 4.6 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$$
.

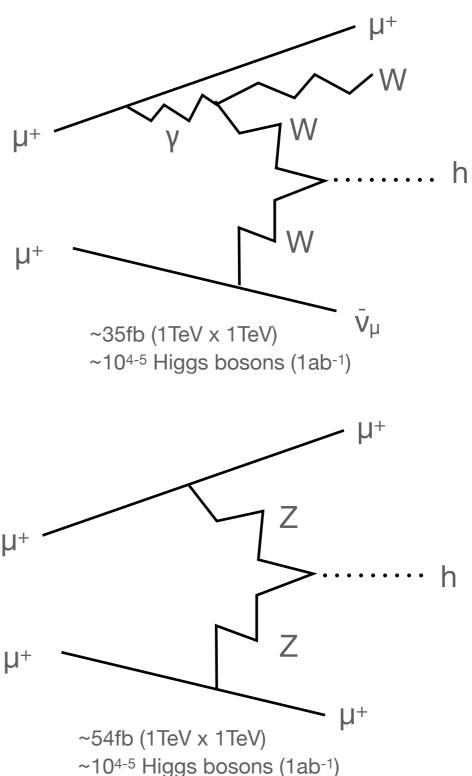
$$\mathcal{L}_{\mu^+e^-} = 4.6 \times 10^{33} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}.$$

 $\mathcal{L}_{\mu^+\mu^+} = 5.7 \times 10^{32} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}.$

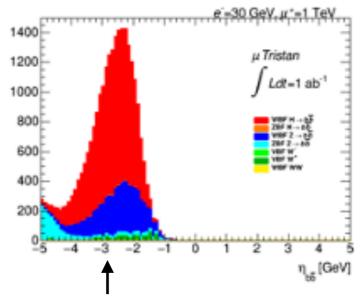
(β* may be much smaller?)

ab-1 level for 10yrs running.

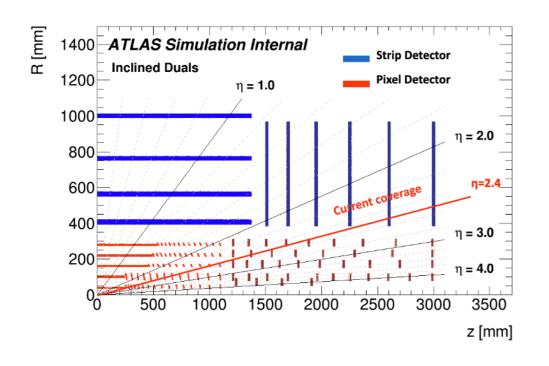

not bad.

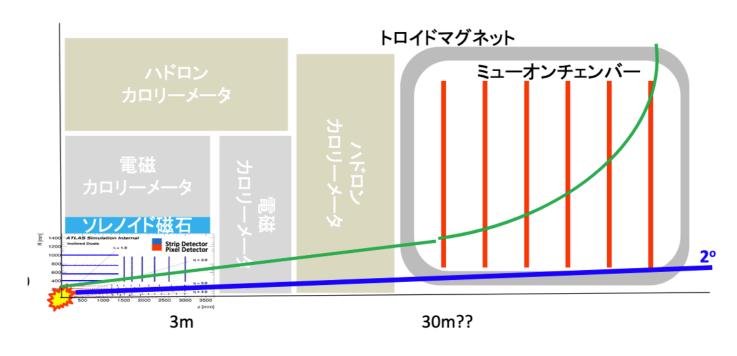

Luminosity

Our estimates are actually pretty much conservative.


Conservative.									
	LHC	HL-LHC		MAP		LEMMA	μ [†] TRIŞ	STAN	/ERL 🖣
			Higgs		/		$\mu^+ e^-$	$\mu^{+}\mu^{+}$	$\mu^+ e^-$
ビームエネルギー (GeV)	7000	7000	63	200	1500	3000	1000 x 30	1000	1000 x 60
重心系エネルギー (GeV)	14000	14000	126	400	3000	6000	350	2000	500
リングの円周(m)	26659	26659	350	1000	6000	6000	3000	3000	3000
偏向磁場(T)	8.65	8.65	3	5	5	15	10	10	10
総供給粒子数(×10 ⁹ /s)			20000	20000	20000	90	40000	10000	10000
バンチ辺りの粒子数(×10 ⁹)	100	220	2000	2000	2000	6	20 x 60	20	20 x 60
バンチ辺りの電荷(nC)	16.02	35.244	320.4	320.4	320.4	0.9612	2.4 x 9.6	3.204	2.4 x 9.6
バンチ数	2835	2736	1	1	1′	1	80	40	80
規格化エミッタンス(μm rad	3.75	2.5	25	25	25	0.04	4	4	4
衝突点エミッタンス(nm rad)	0.056	0.0375	41.67	13.125	1.75	0.0014	0.4	0.4	0.4
エネルギー分散(%)	0.1	0.1	0.1	0.1	0.1	3	0.1	0.1	0.1
衝突点 β * x,y (mm)	500	150	94	26	3	0.2	30 x 7	15 x 1	15 x 1
バンチ長 σz(mm)	75	75	94	26	3	0.1	5	1	1
衝突点ビームサイズx,y(μm	0.016	0.016	196	26	3.2	0.017	12 x 1	8.6 x 0.4	8.6 x 0.4
崩壊までのターン数			450	700	785	3114	2000	2000	2000
衝突頻度(kHz)	11	11	857	300	50	50	100	100	100
衝突点の数	1	1	2	2	2	1	1	1	1
ルミノシティ増大係数	1	1	1	1	1′	1	1	1	1
ルミノシティ (×10 ³⁴ cm ⁻² s	0.992	210.93	0.012	0.1	4.4	5.1	0.96	0.44	3.6
積分ルミノシティ (ab ⁻¹ /year	0.214	45.56	0.003	0.0216	0.95	1.1016	0.20736	0.09504	0.7776
Higgsの生成断面積 (fb)			1600				100	54	240
Higgs粒子の生成数/year			4147				20736	5132	186624

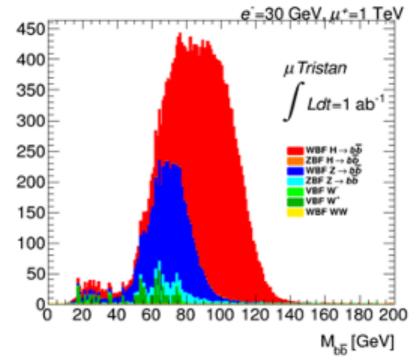
What can we do at µTRISTAN?



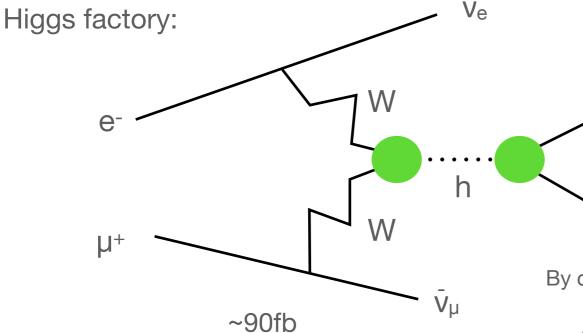

μ+e-: Very asymmetric

All the particles go to the direction of the muon.

We need a coverage of η ~-4 (2°), which is the same level as the design of the ATLAS at HL-LHC.



Higgs coupling

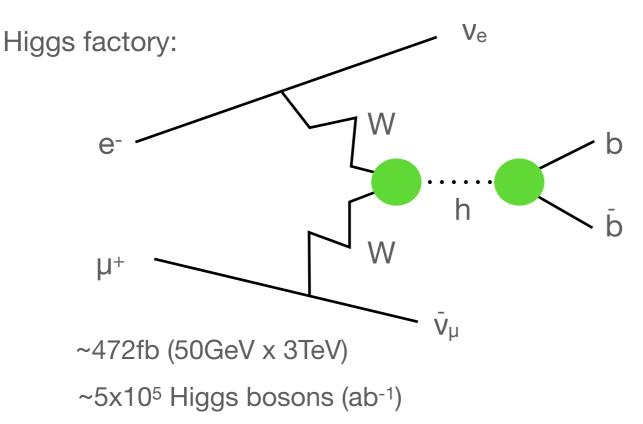

Study in progress in collaboration with Koji Nakamura and Sayuka Kita.

simulation with the ATLAS detector for HL-LHC

acceptance ~ 23%

(This should improve a lot with a detector designed for this collider.)

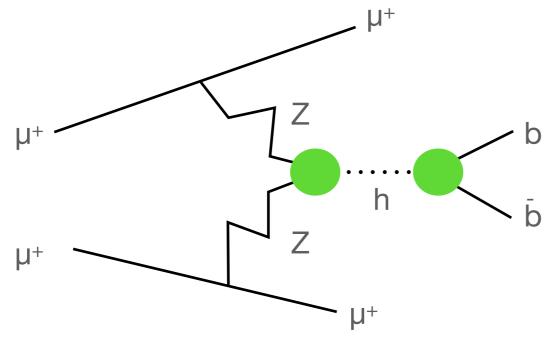
~105 Higgs bosons

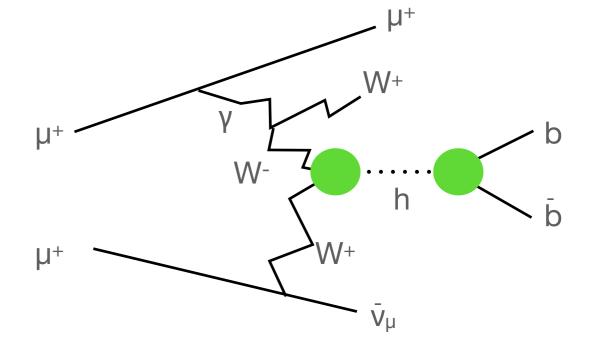

By counting the number of events and compare with the SM prediction

b

$$\begin{split} \Delta(\kappa_W + \kappa_b - \kappa_H)_{\rm stat} &= \frac{1}{2} \frac{1}{\sqrt{N({\rm WBF}) \times {\rm Br}(h \to b\bar{b}) \times {\rm efficiency}}} \\ &= 3.1 \times 10^{-3} \times \left(\frac{{\rm integrated\ luminosity}}{1.0\ {\rm ab}^{-1}}\right)^{-1/2} \left(\frac{{\rm efficiency}}{0.5}\right)^{-1/2} \end{split}$$

sub percent level measurements.

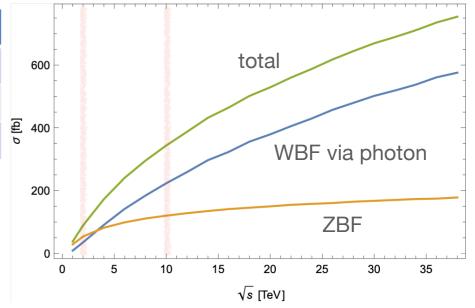

Higher energy? µTevatron?


50GeV electron + 3TeV muon at a **6km** ring √s = 775 GeV

hh production: 89 events/ab-1 (maybe we need more for coupling measurements)

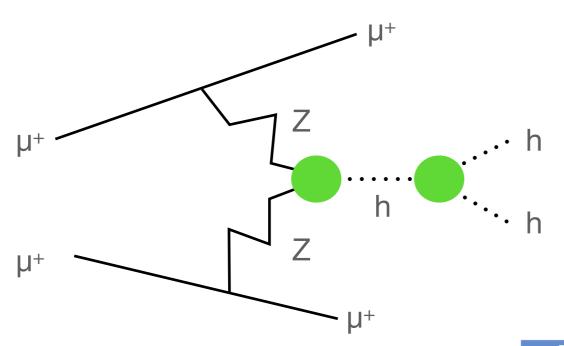
Higgs production@µ+µ+

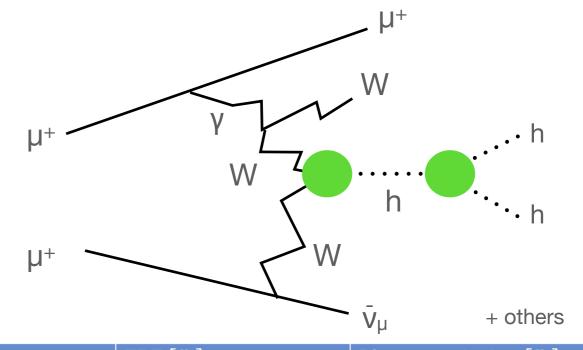
~54fb@2TeV final state all visible


gets more important at high energy

~35fb@2TeV

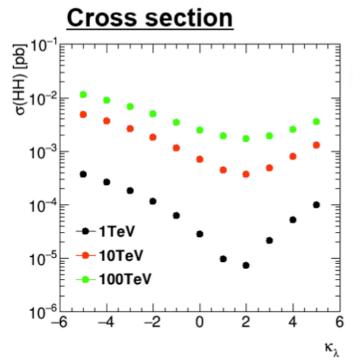
•

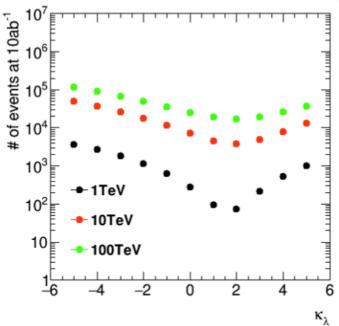

\sqrt{s} [TeV]	ZBF [fb]	Photon emission [fb]
2	54	35
10	121	224
20	150	376

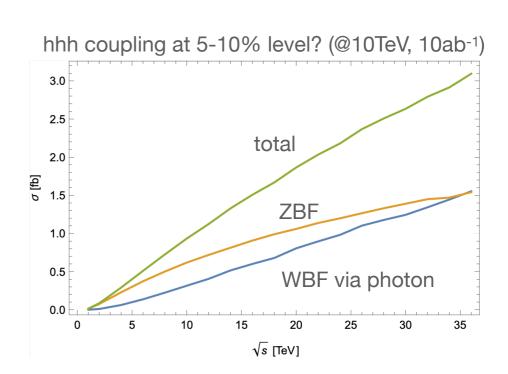

about a factor of two smaller than $\mu^+\mu^-$ (not too bad?)

maybe we should plan 5-10TeV colliders.

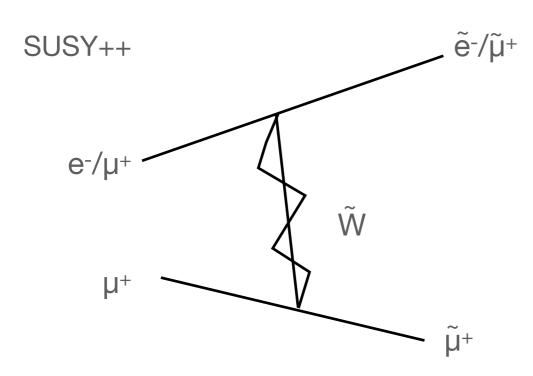
Higgs production@µ+µ+



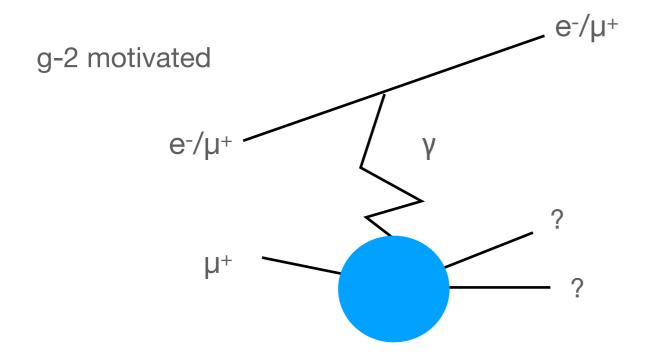

about 1/3 of $\mu^+\mu^-$

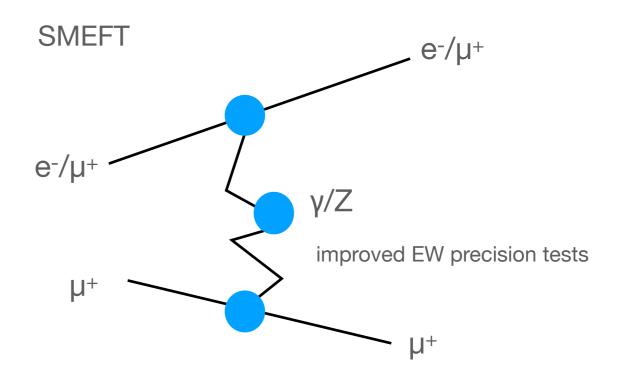

\sqrt{s} [TeV]	ZBF [fb]	Photon emission [fb]
2	0.075	0.010
10	0.62	0.30
20	1.1	0.75

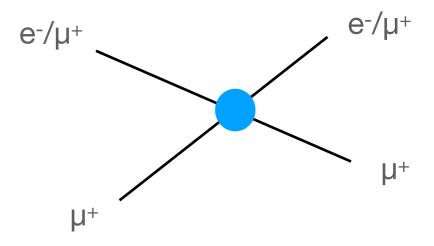
ZBF:



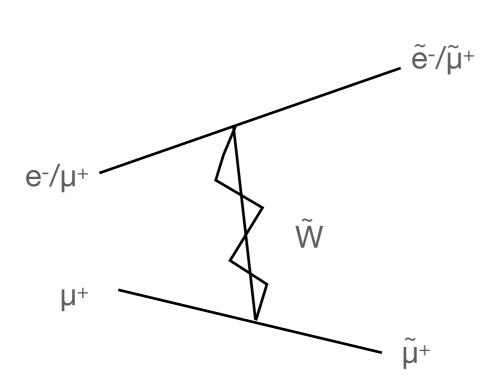
of Events in 10ab-1

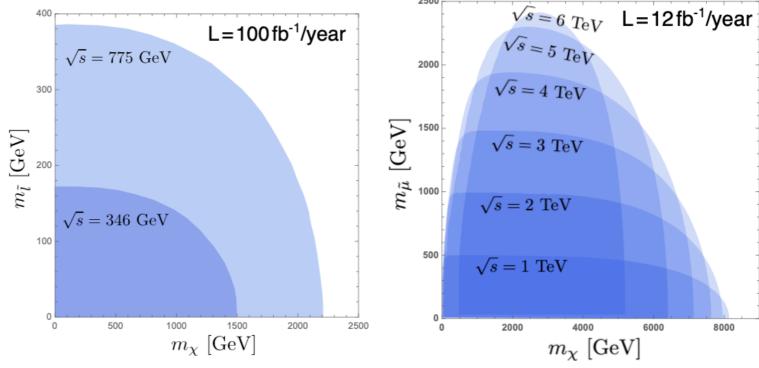





New physics?

TeV mass new particles

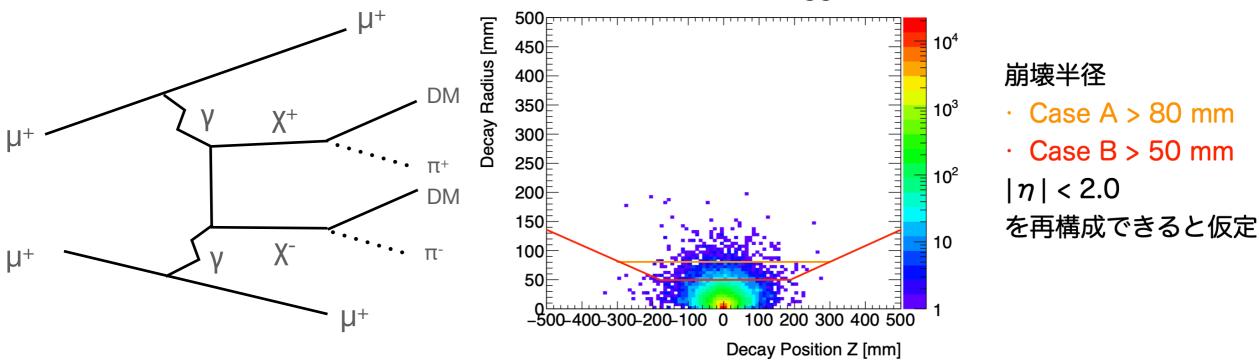




probe 100TeV scale physics!?

Supersymmetry

Regions for $N_{event}/year > 100$.

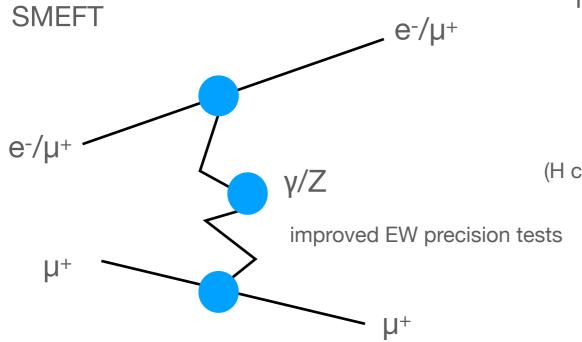


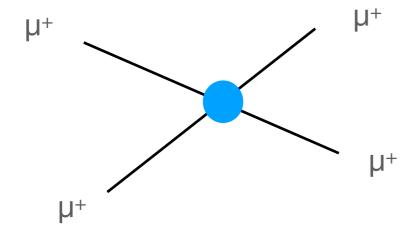
Scalar muons up to TeV even for very heavy gauginos. Almost completely cover the muon g-2 motivated region.

[Endo, Hamaguchi, Iwamoto, Kitahara '21] $1000 \mu = M_2, M_1 = M_2/2$ $1000 \mu = M_2, M_1 = M_2/2$

DM search

√s = 10 TeV, 質量 1 TeV Higgsino の崩壊マップ


of expected events @ 1 ab-1


$\sigma=124.7$ ab	R > 50 mm	R > 80 mm
$\mu^{+}\mu^{+} \rightarrow \chi^{+}\chi^{-}\mu^{+}\mu^{+}$ (2 muons + at least 1 chargino)	2.4	0.5

assumed a muon system which can detect forward muons ($|\eta|$ <6)

Looks like 1TeV Higgsino is within the reach.

Indirect searches

Basically the SM process has peak at the forward region, while interference with new physics (dim-6 operators) give events in the central region.

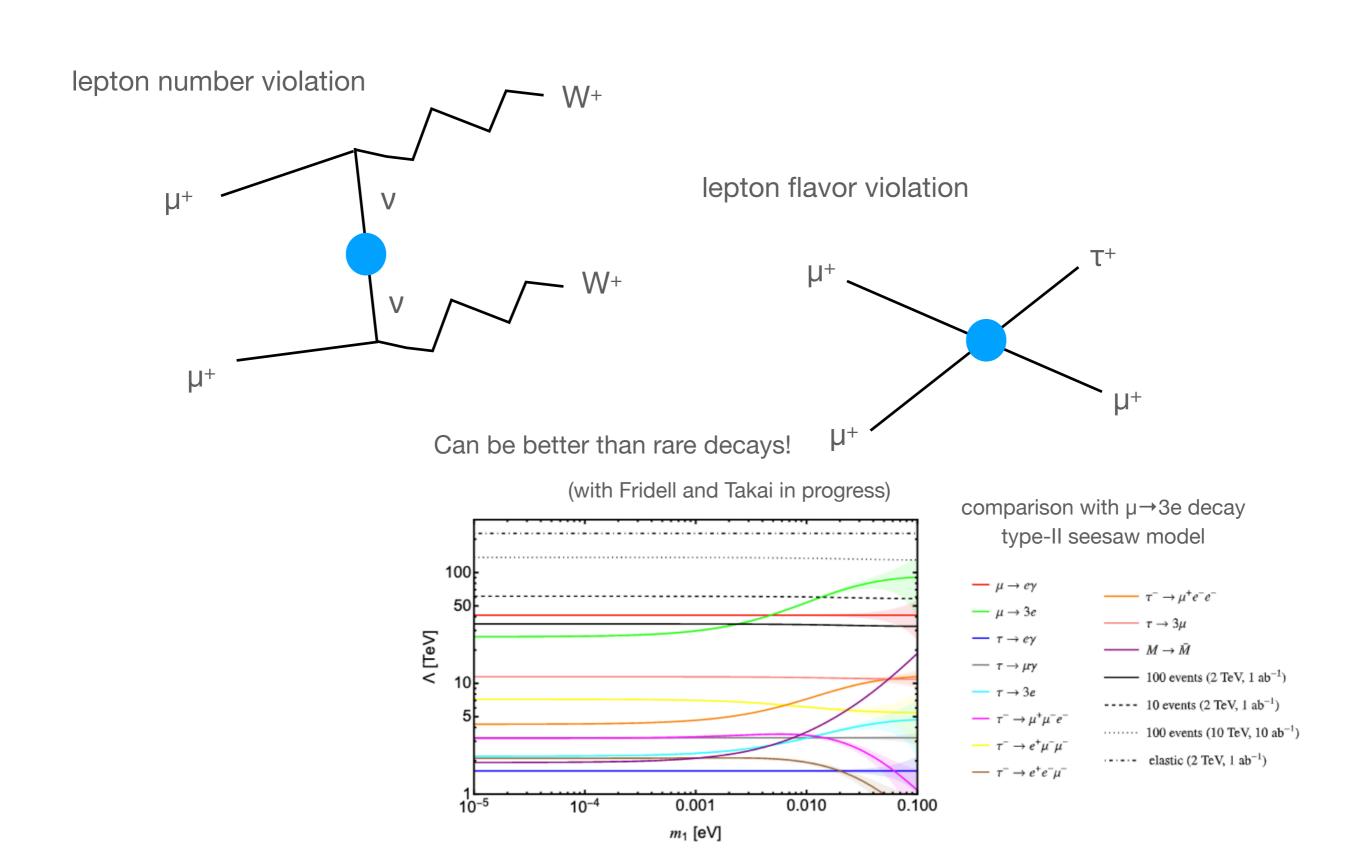
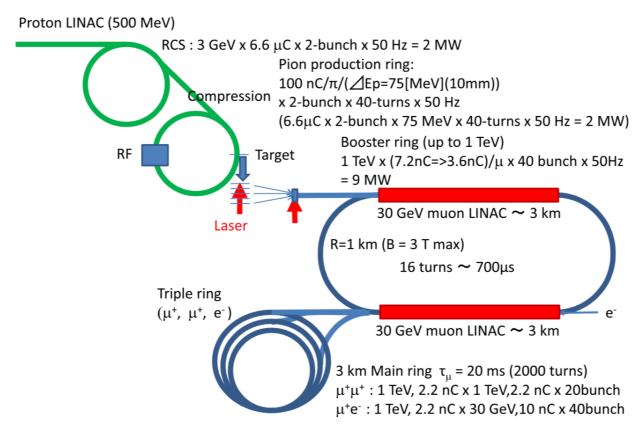

		RR	RL	LR	LL
S	C_{HWB}	6.9 TeV	24 TeV	26 TeV	$6.9~{ m TeV}$
Т	C_{HD}	6.8 TeV	$9.0~{ m TeV}$	14 TeV	$6.8~{ m TeV}$
'	$C_{H\ell}^{(1)} \ C_{H\ell}^{(3)}$	15 TeV	0	$20~{\rm TeV}$	$15~{\rm TeV}$
d current)(L current)	$C_{H\ell}^{(3)}$	20 TeV	$18 \mathrm{TeV}$	$35~{\rm TeV}$	20 TeV
rearrents/L carrents	C_{He}^{IIc}	16 TeV	19 TeV	0	16 TeV
	$C_{\ell\ell}$	$9.6~{ m TeV}$	$13 \mathrm{TeV}$	$43 \mathrm{TeV}$	$9.6~{ m TeV}$
	$C_{\ell\ell}^{\prime\prime}$	0	0	$47~{ m TeV}$	0
	$C_{e\mu}$	0	$66~{ m TeV}$	0	0
4-termi	$C_{-\ell e}$	0	0	0	44 TeV
	$C_{\begin{subarray}{c} \ell e \ \mu\mu ee \end{subarray}}^{ee\mu\mu}$	44 TeV	0	0	0
4-fermi	$C_{\substack{\ell e \ ee\mu\mu}} \ C_{\ell e}$	0	0	0	44 TeV

Table 2: Constraints on SMEFT operators at two-sigma level. $E_e=30$ GeV and $E_\mu=1$ TeV, which amounts to $\sqrt{s}=346$ GeV. The bin size for Θ_e is taken as 1°. We require both muon and electron to go into the range of $15.4^\circ \lesssim \Theta \lesssim 178^\circ$, corresponding to $\eta_{max}=2$ for the muon beam side and $\eta_{max}=4$ for the electron beam side. As a result, the angle range of the electron is $62.8^\circ \lesssim \Theta_e \lesssim 178^\circ$.

		RR	$_{ m LL}$	RL
S	C_{HWB}	10 TeV	9.4 TeV	2.3 TeV
T	C_{HD}	$5.5 \mathrm{TeV}$	$3.5~{ m TeV}$	$2.3 \mathrm{TeV}$
'	$C_{H\ell}^{(1)} \ C_{H\ell}^{(3)}$	$8.0~{ m TeV}$	0	$4.9~{ m TeV}$
(H current)(L current)	$C_{H\ell}^{(3)}$	14 TeV	$7.0~{ m TeV}$	$6.7~{ m TeV}$
	$C_{H_o}^{H_c}$	0	$7.5~{ m TeV}$	$5.3~{ m TeV}$
	$C_{\ell\ell}$	$7.7~{ m TeV}$	$5.0 \mathrm{TeV}$	$3.3~{ m TeV}$
	$C_{-\ell\ell}$	100 TeV	0	0
4-fermi	$\stackrel{\mu\mu\mu\mu\mu}{C}_{\stackrel{ee}{\mu\mu\mu\mu\mu}}$	0	$100~{\rm TeV}$	0
	$C_{\ell e}$	0	0	$46 \mathrm{TeV}$

Table 1: Constraints on SMEFT operators at 2-sigma level. $\sqrt{s}=2$ TeV. The bin size for θ is taken as 1° and each bin covers the range $\theta_i-0.5^\circ<\theta<\theta_i+0.5^\circ$. The considered range of θ_i is $16^\circ\leq\theta_i\leq164^\circ$.


Lepton number/flavor violation?

Summary

We are not satisfied with the current understanding of particle physics. Too much unknowns. Full of mysteries.

μ+ may have a chance. Interesting to consider a km size experiment as a relatively near future project.

Fig. 1. Conceptual design of the $\mu^+e^-/\mu^+\mu^+$ collider.