Probing the nature of heavy neutrinos

K. Mękała^{1,2}, J. Reuter², A. F. Żarnecki¹

¹Faculty of Physics, University of Warsaw ²Theory Group, Deutsches Elektronen-Synchrotron DESY, Hamburg

IDT-WG3-Phys Open Meeting 20.04.2023

based on: [2202.06703] [2301.02602] and further development

Some mysteries of the Standard Model:

- dark matter density
- baryon asymmetry
- neutrino masses, mass hierarchy and oscillations
- nature of neutrinos: Dirac or Majorana

20.04.2023

Some mysteries of the Standard Model:

- dark matter density
- baryon asymmetry
- neutrino masses, mass hierarchy and oscillations
- nature of neutrinos: Dirac or Majorana

can be addressed by introducing new species of neutrinos.

Heavy Neutral Leptons at lepton colliders

Let us assume that HNL couple only to the SM gauge bosons and Higgs: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{W-N-\ell} + \mathcal{L}_{Z-N-\nu} + \mathcal{L}_{H-N-\nu}$

3/22

Heavy Neutral Leptons at lepton colliders

Let us assume that HNL couple only to the SM gauge bosons and Higgs: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{W-N-\ell} + \mathcal{L}_{Z-N-\nu} + \mathcal{L}_{H-N-\nu}$

At lepton colliders, single production with subsequent decay into qql is particularly interesting, as it allows for direct reconstruction of N.

Lepton colliders

MInternational UON Collider Collaboration

International Linear Collider (ILC)

- superconducting accelerating cavities
- Iength of 31 km
- energy of 250-500 GeV, possible upgrade to 1 TeV
- polarisation for both beams (80%/30%)

Compact LInear Collider (CLIC)

- two-beam accelerating scheme
- length of 11-50 km
- 3 energy stages: 380 GeV, 1.5 TeV, 3 TeV
- electron beam polarisation of 80%

Muon Collider

- circular collider
- circumference of $\mathcal{O}(10 \text{ km})$
- different energy stages considered: 125 GeV, 3 TeV, 10 TeV, 14 TeV...

Analysis setup

HeavyN model with 3 <u>Dirac</u> and Majorana neutrinos
couplings:

$$|V_{eN1}|^2 = |V_{\mu N1}|^2 = |V_{\tau N1}^2| \equiv V_{lN}^2$$

 $V_{lN}^2 = 0.0003$ is used for generation of reference sig. samples
All the N2 and N3 couplings are set to zero.

masses:

V

 $m_{\textit{N}} \geqslant 100 ~\text{GeV}$

widths:

above $\Gamma \sim \mathcal{O}(1 \text{ keV}) \rightarrow \text{prompt decays only (no LLP signature)},$ displaced vertices possible for masses $\mathcal{O}(10 \text{ GeV})$ and below

Generating physical events with WHIZARD

- without N propagators ("background")
- $\ell^+\ell^- \rightarrow N\nu \rightarrow qq\ell\nu$ ("signal")
- ILC at 250GeV, 500GeV and 1TeV; CLIC at 3 TeV; MuC at 3 and 10 TeV
- S/B $\sim 10^{-3}$, e.g. ILC500: $qql\nu$ background \sim 10 pb, signal \sim 10 fb

Generating physical events with WHIZARD

- without N propagators ("background")
- $\ell^+\ell^- \rightarrow N\nu \rightarrow qq\ell\nu$ ("signal")
- ILC at 250GeV, 500GeV and 1TeV; CLIC at 3 TeV; MuC at 3 and 10 TeV
- S/B $\sim 10^{-3},$ e.g. ILC500: $qql\nu$ background \sim 10 pb, signal \sim 10 fb
- Simulating detector response with DELPHES

Generating physical events with WHIZARD

- without N propagators ("background")
- $\ell^+\ell^- \rightarrow N\nu \rightarrow qq\ell\nu$ ("signal")
- ILC at 250GeV, 500GeV and 1TeV; CLIC at 3 TeV; MuC at 3 and 10 TeV
- S/B $\sim 10^{-3},$ e.g. ILC500: $qql\nu$ background \sim 10 pb, signal \sim 10 fb
- Simulating detector response with DELPHES
- Preselection of events matching required signal topology
 - cuts opt. to search for N: exactly 1 lepton and 2 jets in the final state

20.04.2023

Generating physical events with WHIZARD

- without N propagators ("background")
- $\ell^+\ell^- \rightarrow N\nu \rightarrow qq\ell\nu$ ("signal")
- ILC at 250GeV, 500GeV and 1TeV; CLIC at 3 TeV; MuC at 3 and 10 TeV
- S/B $\sim 10^{-3},$ e.g. ILC500: $qql\nu$ background ~ 10 pb, signal ~ 10 fb
- Simulating detector response with DELPHES
- Preselection of events matching required signal topology
 - cuts opt. to search for N: exactly 1 lepton and 2 jets in the final state
- BDT training

Generating physical events with WHIZARD

- without N propagators ("background")
- $\ell^+\ell^- \rightarrow N\nu \rightarrow qq\ell\nu$ ("signal")
- ILC at 250GeV, 500GeV and 1TeV; CLIC at 3 TeV; MuC at 3 and 10 TeV
- S/B $\sim 10^{-3},$ e.g. ILC500: $qql\nu$ background ~ 10 pb, signal ~ 10 fb
- Simulating detector response with DELPHES
- Preselection of events matching required signal topology
 - cuts opt. to search for N: exactly 1 lepton and 2 jets in the final state
- BDT training
- OLs method to get final results

qql invariant mass

Boosted Decision Trees

BDT trained with 8 input variables

ILC 500 GeV, (-80%, +30%), $m_{\it N}$ = 300 GeV, μ in the final state

CLs method

BDT response is used to build a model in ROOSTATS to use the CL_s method (combining both channels, e^+e^- : normalisation uncertainties).

Results for e^+e^- colliders

The cross section limits can be translated into limits on the V_{IN}^2 parameter.

Results for the Muon Collider

Exclusion limits are very similar for the Dirac and Majorana neutrino hypothesis, except for off-shell production.

Are there any discriminant variables?

Are there any discriminant variables?

Lepton emission angle in the N rest frame:

CLIC 3 TeV

16 / 22

Are there any discriminant variables?

Lepton emission angle in the N rest frame:

CLIC 3 TeV

More sophisticated variables...

Lepton and dijet directions relative to the electron (positron) beam for positive (negative) lepton charge q_1 :

ILC 250 GeV, $m_N = 150$ GeV

17 / 22

- **1** 2 (independent) BDT trainings:
 - Dirac vs. (α_{BDT} · Majorana + Background)
 - Majorana vs. (α_{BDT} · Dirac + Background)

 $T \geqslant \chi^2_{crit}(\mathsf{DOF}) \Rightarrow \mathsf{hypotheses}$ distinguishable

Krzysztof Mękała (FUW/DESY)

Probing the nature of heavy neutrinos

18 / 22

How to set limits?

$$T' \rightarrow T'(\alpha_{lim}) = \sum_{bins} \frac{\alpha_{lim}^2 (D-M)^2}{B + \alpha_{lim} \cdot \frac{D+M}{2}}$$

and we search for α_{lim} , for which:

$$T \to T(\alpha_{lim}) \equiv \chi^2_{crit}(DOF).$$

How to set limits?

$$T' \rightarrow T'(\alpha_{lim}) = \sum_{bins} \frac{\alpha_{lim}^2 (D-M)^2}{B + \alpha_{lim} \cdot \frac{D+M}{2}}$$

and we search for α_{lim} , for which:

$$T \rightarrow T(\alpha_{lim}) \equiv \chi^2_{crit}(DOF).$$

Technical realisation: signal scaling factor used in the BDT training α_{BDT} is varied to obtain the best limit for each m_N .

- **1** Train BDT for different values of α_{BDT}
- For each α_{BDT} , calculate 95% CL limit α_{lim} corresponding to $T(\alpha_{lim}) = \chi^2_{crit}(DOF)$
- Select the best limit $\alpha_{min} = min(\alpha_{lim})$
- Set the final limit as $V_{\ell N}^{\rm lim} = \alpha_{\min} \cdot V_{\ell N}^{\rm ref}$

Dirac vs. Majorana – preliminary results for ILC250

Dirac vs. Majorana - preliminary results

- At future lepton colliders, heavy neutrino production could be observed almost up to the kinematic limit.
- The expected coupling limits are much stronger than those for hadron colliders, including FCC-hh.
- Future lepton colliders could also efficiently probe the nature of the heavy neutrinos.
- Work in progress; planning to finalise for LCWS'23

• effective extension of the Standard Model

[HeavyN FeynRules]

- widely analysed for searches at hadron colliders
 e.g. [arXiv:1411.7305], [arXiv:2008.01092], [arXiv:2011.02547]
- 3 new heavy neutrinos Majorana or Dirac particles: N1, N2, N3
- 12 free parameters:
 - 3 masses ($\sim 10^2-10^3$ GeV)
 - 9 mixing parameters (3x3 mixing matrix for e, μ,τ and N1, N2, N3)

BACKUP: Running scenarios

ILC:

- 500 GeV: total luminosity of 4000 $\rm fb^{-1}$
 - $\bullet~2 \times 1600~fb^{-1}$ for LR and RL beam polarisations
 - $\bullet~2\times400~fb^{-1}$ for LL and RR beam polarisations

assuming polarisation of $\pm 80\%$ for electrons and $\pm 30\%$ for positrons

- 1 TeV: total luminosity of 8000 $\rm fb^{-1}$
 - $\bullet~2\times3200~fb^{-1}$ for LR and RL beam polarisations
 - $2 \times 800 \text{ fb}^{-1}$ for LL and RR beam polarisations

assuming polarisation of $\pm 80\%$ for electrons and $\pm 20\%$ for positrons C

CLIC:

- 3 TeV: total luminosity of 5000 fb^{-1}
 - ${\scriptstyle \bullet}~$ 4000 fb $^{-1}$ for negative electron beam polarisation
 - $\bullet~1000~fb^{-1}$ for positive electron beam polarisation

assuming polarisation of $\pm 80\%$ for electrons

Muon Collider:

- 3 TeV: total luminosity of 1000 fb⁻¹
- 10 TeV: total luminosity of 10,000 $\rm fb^{-1}$

2/4

BACKUP: Neutrino width

BACKUP: BDT variables

- qql invariant mass
- angle between jets
- angle between dijet and lepton
- lepton energy
- qql energy
- lepton transverse momentum
- dijet transverse momentum
- qql transverse momentum