

Emilio Nanni & Caterina Vernieri IDT WG3 Update 6/8/2023

Outline

- 1. Brief Review of C³ Concept
- 2. Outstanding Technological Issues for the Accelerator
- 3. Demo Program
- 4. New Accelerator Results at LCWS
- 5. Comments Detectors from LCWS
- 7. Conclusion

Acknowledgements

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17661 April 12, 2022

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

Editors:

SRIDHARA DASU⁴⁴, EMILIO A. NANNI³⁵, MICHAEL E. PESKIN³⁶, CATERINA VERNIERI³⁶

Contributors:

TIM BARKLOW³⁶, RAINER BARTOLDUS³⁶, PUSHPALATHA C. BHAT¹⁴, KEVIN BLACK⁴⁴, JIM BRAU²⁹, MARTIN BREIDENBACH³⁶, NATHANIEL CRAIG⁷, DMITRI DENISOV³, LINDSEY GRAY¹⁴, PHILIP C. HARRIS²⁴, MICHAEL KAGAN³⁶, ZHEN LIU²³, PATRICK MEADE³⁶, NATHAN MAJERNIK⁶, SERGEI NAGAITSEV^{†14}, ISOBEL OJALVO³², CHRISTOPH PAUS²⁴, CARL SCHROEDER¹⁷, ARIEL G. SCHWARTZMAN³⁶, JAN STRUBE^{29,30}, SU DONG³⁶, SAMI TANTAWI³⁶, LIAN-TAO WANG¹⁰, ANDY WHITE³⁸, GRAHAM W. WILSON²⁶

Endorsers:

KAUSTUBH AGASHE²¹, DANIEL AKERIB³⁶, ARAM APYAN², JEAN-FRANÇOIS ARGUIN²⁵, CHARLES BALTAY⁴⁵, BARRY BARISH¹⁹, WILLIAM BARLETTA²⁴, MATTHEW BASSO⁴¹, LOTHAR BAUERDICK¹⁴, SERGEY BELOMESTNYKH^{14,37}, KENNETH BLOOM²⁷, TULIKA BOSE⁴⁴, QUENTIN BUAT⁴³, YUNHAI CAI³⁶, ANADI CANEPA¹⁴, MARIO CARDOSO³⁶, VIVIANA CAVALIERE³, SANHA CHEONG¹³⁶, RAYMOND T. CO²², JOHN CONWAY⁵, PALLABI DAS³², CHRIS DAMERELL³⁵, SALLY DAWSON³, ANKUR DHAR³⁶, FRANZ-JOSEF DECKER³⁶, MARCEL W. DEMARTEAU²⁸, LANCE DIXON³⁶, VALERY DOLGASHEV³⁶, ROBIN ERRACHER⁵, ERIC ESAREV¹⁷, PIETER EVERAERTS⁴⁴, ANNIKA GABRIEL³⁶, LIXIN GE³⁶, SPENCER

GESSNEr³⁶, LAWRENCE GIBBONS¹³, BHAWNA GOMBEI⁵, JULIA GONSRI¹⁴, STEFANIA GORI⁶, PAUL GRANNIS³⁶, HOWARD E. HABER⁸, NICOLE M. HARTMAN^{†36}, JEROME HASTINGS³⁶, MATT HERNDON⁴⁴, NIGEL HESSEY⁴², DAVID HITLIN⁹, MICHAEL HOGANSON³⁶, ANSON HOOK²¹, HAOYI (KENNY) JIA⁴⁴, KETINO KAADZE²⁰, MARK KEMP³⁶, CHRISTOPHER J. KENNEY³⁶, ARKADIY KLEBANER¹⁴, CHARIS KLEIO KORAKA⁴⁴, ZENGHAI Li³⁶, MATTHIAS LIEPE¹², MIAOYUAN LIU³³, SHIVANI LOMTE⁴⁴, IAN LOW^{†1}, YANG MA³¹, THOMAS MARKIEWICZ³⁶, PETRA MERKEL¹⁴, BERNHARD MISTLBERGER³⁶, ABDOLLAH MOHAMMADI⁴⁴, DAVID MONTANARI¹⁴, CHRISTOPHER NANTISTA³⁶, MEENAKSHI NARAIN⁴,

TIMOTHY NELSON³⁶, CHO-KUEN NG³⁶, ALEX NGUYEN³⁶, JASON NIELSEN⁸, MOHAMED A. K. OTHMAN³⁶, MARC OSHERSON³³, KATHERINE PACHAL⁴², SIMONE PACAN GRISO¹⁷, DENNIS PALMER³⁶, EWAN PATERSON³⁶, RITCHIE PATTERSON¹², JANNICKE PEARKES¹³⁶, NAN PHINNEY³⁶, LUISE POLEY⁴², CHRIS POTTER³⁰, STEFANO PROFUMO¹⁸, THOMAS G. RIZZO³⁶, RIVER ROBLES³⁶, AARON ROODMAN³⁶, JAMES ROSENZWEIG⁶, MURTAZA SAFDARI¹³⁶, PIERRE SAVARD^{41,42}, ALEXANDER SAVIN⁴⁴, BRUCE A. SCHUMM¹⁸, ROY SCHWITTERS³⁰, VARUN SHARMA⁴⁴, VLADIMIR SHILTSEV¹⁴, EVGENYA SIMAKOV¹⁹, JOHN SMEDLEY¹⁹, EMMA SINVELY³⁶, BRUNG SPATARO¹⁶, MARCEL STANITZKI¹³, GIORDON STARK¹⁸, BERND STELZER¹⁴², OLIVER STELZER-CHILTON⁴², MAXIMILIAN SWIATLOWSKI⁴², RICHARD TEMKIN²⁴,

JULIA THOM¹², ALESSANDRO TRICOLI³, CARL VUOSALO⁴⁴, BRANDON WEATHERFORD³⁶, GLEN WHITE³⁶, STEPHANE WILLOCQ²², MONIKA YADAV^{6,18}, VYACHESLAV YAKOVLEV¹⁴, HITOSHI YAMAMOTO⁴⁰ CHARLES YOUNG³⁶, LILING XIAO³⁶, ZIJUN XU³⁶, JINLONG ZHANG¹, ZHI ZHENG³⁶

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17660 April 12, 2022

C³ Demonstration Research and Development Plan

Editors:

EMILIO A. NANNI⁶, MARTIN BREIDENBACH⁶, CATERINA VERNIERI⁶, SERGEY BELOMESTNYKH^{2,7}, PUSHPALATHA BHAT² AND SERGEI NAGAITSEV^{2,10}

Authors:

MEI BAI⁶, TIM BARKLOW⁶, ANKUR DHAR⁶, RAM C. DHULEY², CHRIS DOSS⁹, JOSEPH DURIS⁶, AURALEE EDELEN⁶, CLAUDIO EMMA⁶, JOSEF FRISCH⁶, ANNIKA GABRIEL⁶, SPENCER GESSNER⁶, CARSTEN HAST⁶, ARKADIY KLEBANER², ANATOLY K. KRASNYKH⁶, JOHN LEWELLEN⁶, MATTHIAS LIEPE¹, MICHAEL LITOS⁹, JARED MAXSON¹, DAVID MONTANARI², PIETRO MUSUMECI⁸, CHO-KUEN NG⁶, MOHAMED A. K. OTHMAN⁶, MARCO ORIUNNO⁶, DENNIS PALMER⁶, J. RITCHIE PATTERSON¹, MICHAEL E. PESKIN⁶, THOMAS J. PETERSON⁶, JI QIANG³, JAMES ROSENZWEIG⁸, VLADIMIR SHILTSEV, EVGENYA SIMAKOV⁴, BRUNO SPATARO⁵, EMMA SNIVELN⁶, SAMI TANTAWI⁶, BRANDON WEATHERFORD⁶, AND GLEN WHITE⁶

¹Cornell University

²Fermi National Accelerator Laboratory
 ³Lawrence Berkeley National Laboratory
 ⁴Los Alamos National Laboratory
 ⁵National Laboratory of Frascati, INFN-LNF
 ⁶SLAC National Accelerator Laboratory, Stanford University
 ⁷Stony Brook University
 ⁸University of California, Los Angeles
 ⁹University of Colorado, Boulder
 ¹⁰University of Chicago

Additional Contributors

Mitchell Schneider Charlotte Whener Gordon Bowden Andy Haase Julian Merrick Bob Conley Radiabeam Cici Hanna

> SLAC-PUB-17629 November 1, 2021

 C^3 : A "Cool" Route to the Higgs Boson and Beyond

MEI BAI, TIM BARKLOW, RAINER BARTOLDUS, MARTIN BREIDENBACH^{*}, PHILIPPE GRENIER, ZHIRONG HUANG, MICHAEL KAGAN, ZENGHAI LI, THOMAS W. MARKIEWICZ, EMILIO A. NANNI^{*}, MAMDOUH NASR, CHO-KUEN NG, MARCO ORIUNNO, MICHAEL E. PESKIN^{*}, THOMAS G. RIZZO, ARIEL G. SCHWARTZMAN, DONG SU, SAMI TANTAWI, CATERINA VERNIERI^{*}, GLEN WHITE, CHARLES C. YOUNG

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

John Lewellen, Evgenya Simakov

Los Alamos National Laboratory, Los Alamos, NM 87545

JAMES ROSENZWEIG

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

Bruno Spataro

INFN-LNF, Frascati, Rome 00044, Italy

VLADIMIR SHILTSEV

Fermi National Accelerator Laboratory, Batavia IL 60510-5011

More Details Here (Follow, Endorse, Collaborate):

https://indico.slac.stanford.edu/event/7155/

- C³ is based on a new rf technology
 - Dramatically improving efficiency and breakdown rate
- Distributed power to each cavity from a common RF manifold
- Operation at cryogenic temperatures (LN₂ ~80 K)
- Robust operations at high gradient: 120 MeV/m
- Scalable to multi-TeV operation

High Gradient Operation at 150 MV/m

C³ Prototype One Meter Structure

High power Test at Radiabeam (C-band)

Tunnel Layout for Main Linac 250/550 GeV CoM

Need to optimize tunnel layout - first study looked at 9.5 m inner diameter in order to match ILC costing model

• Must minimize diameter to reduce cost and construction time

Surface site (cut/cover) provides interesting alternative – concerns with length of site for future upgrade

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m

• 7 km footprint at 155 MeV/m for 550 GeV CoM – present Fermilab site Large portions of accelerator complex compatible between LC technologies

- Beam delivery / IP modified from ILC (1.5 km for 550 GeV CoM)
- Compatible w/ ILC-like detector
- Damping rings and injectors to be optimized with CLIC as baseline

C³ Technical Timeline for 250/550 GeV CoM

Technically limited timeline developed through the Snowmass process

ILC Update

Energy upgrade in parallel to operation with installation of additional RF power sources

	2019-2	2024	2025-2034		203	2035-2044		2045-2054		2055-2064						
Accelerator						 						 	 		 	
Demo proposal																
Demo test																
CDR preparation																
TDR preparation																
Industrialization																
TDR review																
Construction																
Commissioning																
$2 \text{ ab}^{-1} @ 250 \text{ GeV}$																
RF Upgrade																
$4 \text{ ab}^{-1} @ 550 \text{ GeV}$																
Multi-TeV Upg.																
				-		-										

HL-LHC

8

Accelerator Design

ILC Update

 Engineering and design of prototype cryomodule underway

Focused on challenges identified with community through Snowmass (all underway)

- Gradient Scaling up to meter scale cryogenic tests
- Vibrations Measurements with full thermal load
- Alignment Working towards raft prototype
- Cryogenics Two-phase flow simulations to full flow tests
- Damping Materials, design and simulation
- Beam Loading and Stability Thermionic beam test
- Scalability Cryomodules and integration

Cryomodule Concept

C³ Demonstration R&D Plan

C³ demonstration R&D needed to advance technology beyond CDR level Minimum requirement for Demonstration R&D Plan:

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
- Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate
- Operation with a multi-bunch photo injector high charges bunches to induce wakes, tunable delay witness bunch to measure wakes
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin) 170 MeV/m
 - 18X 50 MW C-band sources off the shelf units
- Fully damped-detuned accelerating structure
- Work with industry to develop C-band source unit optimized for installation with main linac
 This demonstration directly benefits development of compact FELs, beam dynamics, high brightness guns, *etc.* The other elements needed for a linear collider the sources, damping rings, and beam delivery system more advanced from the ILC and CLIC need C³ specific design
 - Our current baseline uses these directly; will look for further cost-optimizations for of C³

The Complete C³ Demonstrator

C³ Demonstration R&D Plan

SLAC

ILC Update

Demo Plan

High Power RF Distribution

A. Krasnykh, BD W 17th May 11:20

Demo Beam Dynamics

J. Wu, BD Th 18th May 16:30

Power Consumption and Sustainability

- Sustainability construction + operations CO₂ emissions per % sensitivity on couplings
 - Polarization and high energy to improve sensitivity
 - Construction CO_2 emissions → minimize excavation and concrete
 - Operations → limit power, decarbonization of the grid and dedicated renewable sources

Surface Tunnel

Ennaer aranneters						
Temperature (K)	77					
Beam Loading (%)	45					
Gradient (MeV/m)	70					
lat Top Pulse Length (μ s)	0.7					
Cryogenic Load (MW)	9					
Main Linac Electrical Load (MW)	100					
Site Power (MW)	~150					

Linac Parameters

B. Bullard, S&A Th 18th May 10:30

250 GeV CoM - Luminosity - 1.3x10³⁴

Parameter	Units	Value
Reliquification Plant Cost	M\$/MW	18
Single Beam Power (125 GeV linac)	MW	2
Total Beam Power	MW	4
Total RF Power	MW	18
Heat Load at Cryogenic Temperature	MW	9
Electrical Power for RF	MW	40
Cryoplant Electrical Power	MW	60
Accelerator Complex Power	MW	~50
Site Power	MW	~150

RF Design to High Gradient and High Power Testing

High gradient testing at LANL

Single cell structures

400ns(Cu/Cu-Ag)

700ns(Cu/Cu-Ag) III 1µs(Cu/Cu-Ag)

SLAC

Pure Cu

10-300

Up to 8 MW per cavity (>240 MeV/m)

High power testing at Radiabeam

- Meter scale structures and components
- ~22 MW delivered in bunker -> 50 MW upgrade in progress

Alignment and Vibrations

RF Power Requirements and Cryogenics

- 70 MeV/m 250 ns Flattop (extendible to 700 ns)
- ~1 microsecond rf pulse, ~30 MW/m 2.3X enhancement from cryo
- No pulse compression
 Ramp power to reduce reflected power
 Flip phase at output to reduce thermals
 <2.5 kW/m of structure for C3-250/550
 15% cooling officiency with LNL

Time (ns)

Gaussian Detuning Provides Required 1st Band Dipole Suppression for Subsequent Bunch, Damping Also Needed

Dipole mode wakefields immediate concern for bunch train 4σ Gaussian detuning of 80 cells for dipole mode (1st band) at f_c =9.5 GHz, w/ $\Delta f/f_c$ =5.6% First subsequent bunch s = 1m, full train ~75 m in length

• Damping needed to suppress re-coherence

ILC Update

Distributed Coupling Structures Provide Natural Path to Implement Detuning and Damping of Higher Order Modes

Individual cell feeds necessitate adoption of split-block assembly Perturbation due to joint does not couple to accelerating mode Exploring gaps in quadrature to damp higher order mode

Detuned Cavity Designs

Quadrant Structure

Abe et al., PASJ, 2017, WEP039

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development

Kick Factor * Q

25 mm tapered lossy slot (sigma=1e6)

Upgrade Options

Luminosity

- Beam power can be increased for additional luminosity
- C^3 has a relatively low current for 250 GeV CoM (0.19 A) - Could we push to match CLIC at 1.66 A? (8.5X increase?)
- Pulse length and rep. rate are also options

Parameter	Units	Baseline	High-Lumi
Energy CoM	GeV	250	250
Gradient	MeV/m	70	70
Beam Current	А	0.2	1.6
Beam Power	MW	2	16
Luminosity	x10 ³⁴	1.3	10.4
Beam Loading		45%	87%
RF Power	MW/m	30	125
Site Power	MW	~150	~180

Energy

- Scalability studied to 3 TeV
- Requires rf pulse compression for reasonable site power
- Higher gradient option (155 MeV/m) in consideration

Cryogenics Scale to multi-TeV

Caution: Requires serious investigation of beam dynamics - great topic for C³ Demonstration R&D **HTS Pulse Compressor**

REBCO Coatings

Detector R&D topics

Some of the R&D topics emerged during LCWS

- Precise timing
 - For PID (10-50ps)
 - For improved tracking (ns) with MAPS
 - For Calorimetry PF
- Highly integrated sensors MAPS for tracking and calorimetry
- Different PID approaches
 - i.e. gaseous compact RICH
- Smart sensors/ASICs
- Better and modern software frameworks
 - Simulation and Reconstruction, leveraging LHC expertise

ILC Update Program Related to C³

ID	Title	Date	Session	Track	Presenters	Email
3	Distributed Coupling Linac for Efficient Acceleration of High Charge Electron Bunches	17 May 2023, 11:00	Accelerator: Normal Conducting RF	Normal Conducting RF	Ankur Dhar	adhar@slac.stanford.edu
4	Physics with the XFEL Compton γγ Collider (XCC) Higgs Factory	17 May 2023, 13:30	Physics and Detectors: Track 1	Track 1: Physics at e+e- colliders	Timothy Barklow	timb@slac.stanford.edu
6	C3	15 May 2023, 10:30	Joint Plenary	Joint	Caterina Vernieri	caterina@slac.stanford.edu
13	A design of the C-band RF photoinjector cavity for testing photocathodes under extreme fields	17 May 2023, 14:40	Accelerator: Normal Conducting RF	Normal Conducting RF	Haoran Xu	haoranxu@lanl.gov
14	Two-cell high-gradient C-band RF accelerator cavity for high power HOM absorber testing	17 May 2023, 11:20	Accelerator: Normal Conducting RF	Normal Conducting RF	Haoran Xu	haoranxu@lanl.gov
20	C3 Main Linac Beam Dynamics	17 May 2023, 10:30	Accelerator: Beam Dynamics	Beam Dynamics	Glen White	whitegr@slac.stanford.edu
21	C3 demonstration plan and applications	17 May 2023, 08:30	Accelerator: Normal Conducting RF	Normal Conducting RF	Faya Wang	fywang@slac.stanford.edu
28	RF sources and power distribution for the C3-demo and beyong	17 May 2023, 13:30	Accelerator: Normal Conducting RF	Normal Conducting RF	Anatoly Krasnykh	krasnykh@slac.stanford.edu
30	Cryogenic Design for C3 Main Linacs	17 May 2023, 14:15	Accelerator: Conventional Facilities	Conventional Facilities	Martin Breidenbach	mib@slac.stanford.edu
31	A nanosecond pulse technology for injection/extraction systems	17 May 2023, 16:10	Accelerator: Beam Dynamics	Normal Conducting RF	Anatoly Krasnykh	krasnykh@slac.stanford.edu
41	C-Band Distributed Coupling Structure Design and Wakefield Damping	17 May 2023, 10:30	Accelerator: Normal Conducting RF	Normal Conducting RF	Zenghai Li	lizh@slac.stanford.edu
46	Pair Production and Hadron Photoproduction Backgrounds at C3	18 May 2023, 13:30	Physics and Detectors: Track 2	Track 2: Analysis and Reconstruction	Elias Mettner	emettner@wisc.edu
47	Muon Backgrounds from Beam Interactions with the Accelerator Structure at C3	18 May 2023, 13:45	Physics and Detectors: Track 2	Track 2: Analysis and Reconstruction	Dimitris Ntounis	dntounis@stanford.edu
51	High Temperature Superconducting RF cavity	18 May 2023, 11:30	Accelerator: Sustainability & Applications	Sustainability and Applications	Gregory Le Sage	lesage@slac.stanford.edu
52	Sustainability studies for the Cool Copper Collider	18 May 2023, 10:30	Accelerator: Sustainability & Applications	Sustainability and Applications	Brendon Bullard	bbullard@slac.stanford.edu
55	Rasnik as alignment system for linac submodules	17 May 2023, 14:30	Accelerator: Conventional Facilities	Conventional Facilities	Harry van der Graaf	vdgraaf@nikhef.nl
88	Cool Copper Collider Demonstrator Beam Dynamics and Diagnostics	18 May 2023, 15:30	Accelerator: Beam Dynamics	Beam Dynamics	Juhao Wu	jhwu@slac.stanford.edu
111	An Integrated Simulation Tool for Dark Current Radiation Effects using ACE3P and Geant4	17 May 2023, 16:00	Accelerator: Normal Conducting RF	Normal Conducting RF	Lixin Ge	lge@slac.stanford.edu
120	Application of CrYogenic Brightness-Optimized Radiofrequency Gun (CYBGORG) for Future Collider Studies	17 May 2023, 14:20	Accelerator: Normal Conducting RF	Normal Conducting RF	Gerard Lawler	gelawler@protonmail.com
207	Wakefield Damping in a Distributed Coupling Accelerating Structure for CLIC	17 May 2023, 16:30	Accelerator: Normal Conducting RF	Normal Conducting RF	Evan Ericson	eje344@mail.usask.ca

Conclusions

- C³ provides a rapid route to precision Higgs physics with a compact 8 km footprint
 - Higgs physics run by 2040
 - US-hosted facility possible
- C³ time structure is compatible with ILC-like detector design and optimizations ongoing
- C³ upgrade to 550 GeV with only added rf sources
 - Higgs self-coupling and expanded physics reach
- C³ is scalable to multi-TeV

II C Undate

- C³ Demo advances technology beyond CDR level
 - 5 year program, followed by completion of TDR and industrialization
 - Three stages with quantitative metrics and milestones for decision points
 - Direct and synergistic contributions to near-term collider concepts

More Details Here (Follow, Endorse, Collaborate):

https://indico.slac.stanford.edu/event/7155/

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Questions?

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Additional Material

Synergies with Future Colliders

RF Accelerator Technology Essential for All Near-Term Collider Concepts

C³ Demo is positioned to contribute synergistically or directly to all near-term collider concepts

- CLIC components, damping, fabrication techniques
- ILC options for electron driven positron source based C³ technology
- Muon Collider high gradient cryogenic copper cavities in cooling channel, alternative linac for acceleration after cooling
- AAC C³ Demo utilized for staging, C³ facility multi-TeV energy upgrade reutilizing tunnel, $\gamma\gamma$ colliders
- FCC-ee common electron and positron injector linac from 6 to 20 GeV
 - reduce length 3.5X <u>OR</u> reduce rf power 3.5X

Wide Aperture S-band Injector Linac

- Planned test at Argonne
 - Tracking with Lucretia includes longitudinal and transverse wakes, chromatic effects etc
- Error study is 100 seeds, 100 μm element offsets, 300 μrad element rolls (rms)
 - No corrections applied

90% seeds < 8 um-rad with lattice errors

Further Cavity Optimization Possible

- Single side coupling iris induces dipole and quad fields
- Coupling hole symmetrization and racetrack shape incorporated to minimize dipole and quad fields

with symmetrization 100X reduction 27 Zenghai Li

Global Contributions

C³ Technical Timeline Only Possible with the Exceptional Progress of ILC and CLIC

Benefit from injector complex and beam delivery concepts

VKX-8311A

420

322

11.994

49 48

36.2

30 000

0.6

0.316

Continue to benefit from technological improvement by ILC and CLIC

High Efficiency RF Sources (CLIC)

3D Particle-in-Cell (PIC) simulations

/oltage, kV

Current, A

requency, GHz

Peak power, MW

Sat. gain, dB

Efficiency, %

field, T

VKX-8311A

Life time, hours

Solenoidal magnetic

RF circuit length, m

Electron Driven

Positron Source

Courtesy of Y. Enomoto

Nanobeams for IP (ATF)

Vibrant International Community for Future Colliders is Essential

Full Parameters

Collider	NLC ₂₈	CLIC ²⁹	ILC 5	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
$\sigma_z [\mu m]$	150	70	300	100	100
β_x [mm]	10	8.0	8.0	12	12
β_{u} [mm]	0.2	0.1	0.41	0.12	0.12
ϵ_x [nm-rad]	4000	900	500	900	900
ϵ_{u} [nm-rad]	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$
Length [km]	23.8	11.4	20.5(31)	8	8
L* [m]	2	6	4.1	4.3	4.3

SLAC ILC Update

Cryomodule Design and Alignment

Up to 1 GeV of acceleration per 9 m cryomodule; ~90% fill factor with eight 1 m structures

Main linac will require 5 micron structure alignment

• Combination of mechanical and beam based alignment

Pre-alignment warm, cold alignment by wire, followed by beam based

- Mechanical motor runs warm or cold no motion during power failure
- Piezo for active alignment

ILC Update

Investigating support and assembly design

Vacuum Insulated

Cryostat

Quadrupole

Support Raft

RF Input

Accelerating

Structure

Requirements for a High Energy e⁺e⁻ Linear Collider

Using established collider designs to inform initial parameters

Quantifying impact of wakes requires detailed studies

- Most important terms aperture, bunch charge (and their scaling with frequency)
 Target initial stage design at 250 GeV CoM
 - 2 MW single beam power

Machine	CLIC	NLC	C ³
Freq (GHz)	12.0	11.4	5.7
a (mm)	2.75	3.9	2.6
Charge (nC)	0.6	1.4	1
Spacing (λ)	6	16	30/20
# of bunches	312	90	133/75

SLAC ILC Update

<u>https://clic-meeting.web.cern.ch/clic-meeting/clictable2010.htm</u>[cm (GeV)

NLC, ZDR Tbl. 1.3,8.3

Breakthrough in the Performance of RF Accelerators

RF power coupled to each cell – no on-axis coupling Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cells equally

Optimization of cell for efficiency (shunt impedance)

- $R_s = G^2/P \text{ [M}\Omega/\text{m]}$
- Control peak surface electric and magnetic fields

Key to high gradient operation

LAC ILC Update

Tantawi, Sami, et al. PRAB 23.9 (2020): 092001.

Cryo-Copper: Enabling Efficient High-Gradient Operation

Cryogenic temperature elevates performance in gradient

- Increased material strength is key factor
- Increase electrical conductivity reduces pulsed heating in the material

Operation at 77 K with liquid nitrogen is simple and practical

- Large-scale production, large heat capacity, simple handling
- Small impact on electrical efficiency

 $\begin{array}{l} \eta_{cp} = LN \; Cryoplant \\ \eta_{cs} = Cryogenic \; Structure \\ \eta_k = RF \; Source \end{array}$

$$\frac{\eta_{cs}}{\eta_k}\eta_{cp}\approx \frac{2.5}{0.5}[0.15]\approx 0.75$$

ILC Update

Cahill, A. D., et al. PRAB 21.10 (2018): 102002.

Beam Format and Detector Design Requirements

ILC timing structure: Fraction of a percent duty cycle

- **Power pulsing possible**, significantly reduce heat load
 - Factor of 50-100 power saving for FE analog power
- Tracking detectors **don't need active cooling**
 - Significantly reduction for the material budget
- Triggerless readout is the baseline
- C³ time structure is compatible with ILC-like detector overall design and ongoing optimizations

ILC timing structure

1 ms long bunch trains at 5 Hz 2820 bunches per train 308ns spacing

C³ timing structure

Why 550 GeV?

We propose **250 GeV** with a relatively inexpensive upgrade to **550 GeV**

- An orthogonal dataset at 550 GeV to cross-check a deviation from the SM predictions observed at 250 GeV
- From 500 to 550 GeV a factor
 2 improvement to the top Yukawa coupling
- O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

Collider	HL-LHC	C^3 /ILC 250 GeV	C^3 /ILC 500 GeV
Luminosity	3 ab^{-1} in 10 yrs	$2 \text{ ab}^{-1} \text{ in } 10 \text{ yrs}$	$+ 4 \text{ ab}^{-1} \text{ in } 10 \text{ yrs}$
Polarization	-	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\%~(0\%)$
g_{HZZ} (%)	3.2	0.38(0.40)	0.20 (0.21)
g_{HWW} (%)	2.9	0.38(0.40)	0.20 (0.20)
$g_{Hbb}~(\%)$	4.9	0.80(0.85)	0.43 (0.44)
g_{Hcc} (%)	-	1.8(1.8)	1.1(1.1)
g_{Hgg} (%)	2.3	1.6(1.7)	0.92(0.93)
$g_{H\tau\tau}$ (%)	3.1	0.95(1.0)	$0.64 \ (0.65)$
$g_{H\mu\mu}$ (%)	3.1	4.0(4.0)	3.8(3.8)
$g_{H\gamma\gamma}$ (%)	3.3	1.1 (1.1)	0.97 (0.97)
$g_{HZ\gamma}$ (%)	11.	8.9(8.9)	6.5(6.8)
g_{Htt} (%)	3.5	—	$3.0 (3.0)^*$
g_{HHH} (%)	50	49 (49)	22(22)
Γ_H (%)	5	1.3(1.4)	0.70(0.70)

One note on polarization

arXiv:1708.08912 arXiv:1801.02840

- There are extensive comparisons between the FCC-ee plan and the C³/ILC runs that show they are rather compatible to study the Higgs Boson
- When analyzing Higgs couplings with SMEFT, 2 ab⁻¹ of polarized running is essentially equivalent to 5 ab⁻¹ of unpolarized running.
 - Electron polarization is essential for this.
 But, there is almost no difference in the expectation with and without positron polarization.
 - Positron polarization allows more crosschecks of systematic errors. We may wish to add it later.
 - Positron polarization brings a large advantage in multi-TeV running, where the most important cross sections are from ele+_R

	2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab-350
coupling	pol.	pol.	unpol.	unpol
HZZ	0.50	0.35	0.41	0.34
HWW	0.50	0.35	0.42	0.35
Hbb	0.99	0.59	0.72	0.62
H au au	1.1	0.75	0.81	0.71
Hgg	1.6	0.96	1.1	0.96
Hcc	1.8	1.2	1.2	1.1
$H\gamma\gamma$	1.1	1.0	1.0	1.0
$H\gamma Z$	9.1	6.6	9.5	8.1
$H\mu\mu$	4.0	3.8	3.8	3.7
Htt	-	6.3	-	-
HHH	-	27	-	-
Γ_{tot}	2.3	1.6	1.6	1.4
Γ_{inv}	0.36	0.32	0.34	0.30
Γ_{other}	1.6	1.2	1.1	0.94

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development

Damping Slot Prototype

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$
Design Maturity	CDR	CDR	TDR	pre-CDR	pre-CDR