Heavy Flavor Meeting

SSbar 250 GeV Analysis

Yuichi Okugawa Sep 27th, 2022

December Updates

- 1. Efficiency and Purity
 - a. Kaon Identificatin
 - b. dE/dx distance initialization fault
- 2. The pq-method
 - a. Correction to the polar angle
- 3. The uubar result
 - a. First polar angle result
 - b. Efficiency & purity

KaonID Efficiency & Purity

- Kaon identification
 - Efficiency
 - Purity
- Definition

stability =
$$\frac{N_{rec} \cap N_{gen}}{N_{gen}}$$

$$purity = \frac{N_{rec} \cap N_{gen}}{N_{reco}}$$

Kaon identification

0

Efficiency Purity 0 Definition stability = $\frac{N_{rec} \cap N_{gen}}{N_{gen}}$ λT $\sim \lambda \tau$

$$purity = \frac{N_{rec} \cap N_{gen}}{N_{reco}}$$

 N_{gen} N_{rec} 4 $N_{rec} \cap N_{gen}$

• Kaon identification

 $\frac{N_{gen}}{N_{rec}}$ 4 Efficiency 0 5 Purity 0 $N_{rec} \cap N_{gen}$ Definition stability = $\frac{N_{rec} \cap N_{gen}}{N_{qen}}$ $purity = \frac{N_{rec} \cap N_{gen}}{N_{reco}}$ L

• Kaon identification

 N_{gen} 4 N_{rec} 5 Efficiency 0 Purity 0 $N_{rec} \cap N_{gen}$ 2 Definition $\Delta_{\cos\theta} < 0.02$ stability = $\frac{N_{rec} \cap N_{gen}}{N_{gen}}$ $purity = \frac{N_{rec} \cap N_{gen}}{N_{reco}}$ L

- Kaon identification
 - Efficiency
 - Purity
- Definition

stability =
$$\frac{N_{rec} \cap N_{gen}}{N_{gen}}$$

$$purity = \frac{N_{rec} \cap N_{gen}}{N_{reco}}$$

 N_{gen} 4 Nrec 5 $N_{rec} \cap N_{gen}$ 2 $\Delta_{\cos\theta} < 0.02$ stability = 0.5purity = 0.4L L $\cos \theta$

Trivial bug, but one should keep in mind "0" is the ideal case for the dE/dx dist particle ID. The intrinsic problem probably happens in the MarlinReco/LikelihoodPID _pfo_piddedx_e_dedxdist[ipfo]=0; _pfo_piddedx_mu_dedxdist[ipfo]=0; _pfo_piddedx_pi_dedxdist[ipfo]=0; _pfo_piddedx_k_dedxdist[ipfo]=0; _pfo_piddedx_p_dedxdist[ipfo]=0;

Remove PFOs with dEdx_dist == 0

Stability and Purity

The pq-method

Previously on ssbar analysis...

Fit function:

 $S(1+\cos^2\theta) + A\cos\theta$

Gen:

S = 1.07E-2 ± 1.7E-6 A = 2.01E-2 ± 3.7E-6

Reco:

S = 1.08E-2 ± 1.9E-5 A = 1.90E-2 ± 4.7E-5

Normalization range (-0.76,0.76)

pq method

pq calculation

• Solve :

$$N_{acc} = p^2 N + q^2 N$$
$$N_{rej} = 2pq N$$
$$1 = p + q$$

• Solution :

$$p = \frac{N \pm \sqrt{N(N - 2N_{rej})}}{\frac{2}{N \mp \sqrt{N(N - 2N_{rej})}}}$$
$$q = \frac{N \mp \sqrt{N(N - 2N_{rej})}}{2}$$

- Weight
 - Scale each bin in AFB plot so that we will obtain N_acc with eq on the right.
 - Take average of p values over 4 different points with polar angle value ± stat errors

LPFO 20.0 < p < 60.0 GeV

N (KxK) = 232457

Efficiency

The Main Efficiency Killer

• TPC Hits cut

• Restricts detector acceptance region ($0.8 < |\cos\theta|$)

• Momentum cut

- Tight cut for LPFO momentum selection (20 < p < 60 GeV)
- dE/dx distance selection
 - The minimum K dE/dx distance is selected.

<u>LPFO 10.0

N (KxK) = 833627

LPFO 20.0 < p < 60.0 GeV | 0 < TPC Hits

p value 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0^L 0.2 0.3 0.9 1 cosθ_{K[±]} 0.1 0.4 0.5 0.6 0.7 0.8

N (KxK) = 489246

LPFO 15.0 < p GeV | 0 < TPC Hits

N (KxK) = -

LPFO 15.0 < p GeV | 0 < TPC Hits (Efficiency correction)

N(KxK) = -

The uubar result

<u>LPFO 15.0

N(KxK) = -

Summary & Prospects

Summary

• Efficiency & Purity

- Defined and calculated
- Operating efficiency, average 0.75 at the barrel region
- Application of efficiency correction to compensate the forward region.

• The pq-method

- Corrects tagging without the use of mc information.
- It can work while loosening the cuts.
- Operating p-value ~ 0.7
- Opened the possibility of gaining statistics

• The uubar result

• First preliminary results have shown.

Prospects

- Mix other light/heavy flavor quark pair production events.
 - ss + uu/dd/cc/bb
- The ccbar background analysis
 - On going with help of new intern student (Yevhenii)
- Optimization of momentum cut