Higgs Self-coupling at LHC ATLAS+CMS

Tatsuya Masubuchi University of Tokyo (ICEPP)

Higgs Measurement Overview at LHC

- Higgs boson discovery providing plenty of fundamental measurements
- Higgs mass (ATLAS: H→ZZ→4I): 124.99±0.18(stat)±0.04(sys) GeV

Higgs coupling

- Measure coupling modifiers ($\kappa = g_x^{measure}/g_x^{SM}$) using various production and decay modes
- 7-11% for 3rd generation fermion, W/Z
- ~30% for $\mu, \gg 100\%$ for charm
- Upper limit on BR(H→invisible) 7.7%

Higgs Measurement Overview at LHC

No significant deviation from SM observed (yet!)

- λ_3 can be directly accessed and measured via Higgs pair production (HH)
- It may connect to the fundamental issues of HEP (Stability of Universe, Baryogenesis...)
 - \rightarrow λ may significantly deviate from SM in the BSM scenario

Higgs pair production at LHC

- pp→HH production cross section is quite small (~30fb) at LHC (13 TeV)
 - >1000 times lower than $pp \rightarrow H$ (**55.6pb**)
 - VERY challenging to observe HH process(and measure λ_{HHH})

14 TeV

Higgs pair production at LHC

- pp→HH processes include diagrams with/without self-coupling
 - Interfere non- κ_{λ} and κ_{λ} diagrams (destructive interference))

0.1

DiHiggs Decay and Analysis Strategy

- Two Higgs boson decays
 - → variety of final states can be studied

Golden channels: H(→bb)+H(→XX)

- H→bb: Highest branching ratio (~58%), but not clean in hadron collider
- HH→bbbb: Highest yield, but lot of BG
 - Hayashida-kun's talk later
- HH→bbtt: Low yield, but cleaner
- · HH \rightarrow bbyy: Very low yield, very clean

Clean

HH kinematics depends on κ_{λ} value → Keep sensitivity in wider κ_{λ} range

2nd ILC-J Physics WG meeting

8

Analysis

2023/2/22

Cleanest channel

HH→bbγγ

• At least 2 photon (narrow $m_{\gamma\gamma}$ resonance)

t/b/τ

t/b/τ

t/b/τ

H ---

- Exact 2 b-jets
- Event Categorization (BDT score vs m_{γγbb})

- Main Background
 - γγ+jets(bb), γ+jets (fake γ)
 - Single Higgs($H \rightarrow \gamma \gamma$)+jets
- Final discriminant: diphoton mass (m_{vv})
 - BDTs do not lead bias in $\rm m_{vv}$

2023/2/22

CMS also has similar

analysis strategy

12 ggF category

HH→2b2γ

- Background parametrization: analytical function (non-resonant + single Higgs)
- No significant excess observed
- 95% CL upper limit on cross-section
 - 4.2 × SM (exp. 5.7 × SM)
- Constraints on κ_{λ}
 - -1.5 < κ_{λ} < 6.7 (exp. -2.4 < κ_{λ} < 7.7)

2023/2/22

HH→2b2t

- Require 2T and 2 b-jets
- Categorized by $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$ channels
 - Further subdivided by the trigger
 - Optimize selection/MVA for each category
- Final discriminant: MVA (BDT or NN) scores
 - Both $H \rightarrow \tau \tau$ and $H \rightarrow bb$ event kinematics are used

 $\Delta R(b, b)$ $\Delta p_{\rm T}(\ell, \tau)$

Emiss

 $\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality

 $\Delta \phi(\ell \tau, bb)$ $\Delta \phi(\ell, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$

 $\Delta \phi(\ell \tau, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$

Sub-leading b-tagged jet pT

HH→2b2T

- Set 95% CL upper limit on the cross section
 - 4.7×SM (exp. 3.9×SM)
 - Most sensitive channel in Run2

MVA did great job to extract small signal from huge background S/B ~0.05-0.3

h

Most signal-like bin	T _{had} T _{had}	т _{lep} т _{had} (SLT)	т _{lep} т _{had} (LTT)
ggF HH signal	1.58±0.27	0.77±0.13	0.25±0.05
VBF HH signal	0.023±0.002	0.008±0.001	0.005±0.0004
Total background	6.1±0.8	6±1	6±1
Observed data	8	7	7

Η -

CMS uses DNN scores as final discriminants

3.3×SM (exp. 5.2×SM)

HH→4b

• Highest branching ratio $BR(HH \rightarrow 4I) \sim 34\%$ Backgroup multi b-jets → difficult to model in MC Hayashida-kun gives a presentation in detail later SR using reweighting factor estimated Extrapola from NN Post-Fit Background Stat. + Syst. Error 4b Data **2b** data 200 x SM HH $100 \times \kappa_{\lambda} = 6 HH$ AS Preliminary 위 180 $\sqrt{s} = 13 \text{ TeV}$, 126 fb⁻¹ 160 140 200 80 100 m_{H1} [GeV] 120 1.5 4b data 1.5 Data/Pred 100 1.0 80 0.5 0.5 60 300 400 500 600 700 800 900 1000 60 100 120 m_{HH} [GeV] m_{H1} [GeV]

Other channels (Multi-Leptons)

- Target multi-lepton final states (WWWW, WWTT, TTTT)
- Events categorized by the number of $e/\mu/T_{had}$ objects
 - 7 categories (2ISS, 3I, 4I, 3I+1τ_{had}, 2I+ 2τ_{had}, 1I+3τ_{had}, 4τ_{had})
- Train BDTs for each category
 - Input: lepton kinematics, MET, angular correlations

ML Combined upper limit: 21.3×SM (19.4 exp.)

 $-6.9 < \kappa_{\lambda} < 11.1$ (-6.9 $< \kappa_{\lambda} < 11.7$) (95% CL)

3*t*

4*l*

 $4\tau_h$

Combination: Upper limit on μ_{HH}

- Various channels are studied, however, no strong channel in HH → Combination is crucial!!
- Combined limit on μ_{HH}

ATLAS: 2.4×SM (exp. 2.9×SM) CMS: 3.4×SM (exp. 2.5×SM)

- Overall quite comparable results between ATLAS and CMS
- CMS HH→4b sensitivity is better than ATLAS
 → Combined boosted 4b channel (strong boosted H→bb tagger)
- Significant analysis improvement during Run2
 reach SM cross section in ATLAS+CMS combination in Run3 (+ further analysis improvements)!?

Combination: Constraint on \kappa_{\lambda}

• Comparable constraints on k_{λ} in both experiments

 κ_{2V}

• VBF HH production is unique channel which is sensitive to quartic k_{2V} coupling

No significant deviation from SM. Non-zero k_{2V} excluded by 6.6 σ

Single Higgs can constrain κ_{λ} ?

Single Higgs productions also depends self-coupling

κ_λ dependence by a function of Higgs p_T
 Precision measurement on differential cross section is crucial

- Perform combined fit with single Higgs (STXS) and HH
 → Possible to constrain other coupling parameters (κ_t) simultaneously
 - → ~5-10% improvement on κ_{λ} constraint

Kλ

Future (HL-LHC) Prospects (ATLAS)

•

 $\sigma_{ggF+VBF}(HH)$ [fb]

Future (HL-LHC) Prospects

Sensitivity on HH production at baseline scenario

Evidence (3 σ): $\kappa_{\lambda} < 1.2$ or $\kappa_{\lambda} > 4.8$, Observation (5 σ): $\kappa_{\lambda} < 0.0$ or $\kappa_{\lambda} > 5.8$

✓ ATLAS+CMS combination (total 2×4000 fb⁻¹)

• κ_{λ} measurement (assuming SM, κ_{λ} =1) 0.5 < κ_{λ} < 1.6 (68% CI), 0.0 < κ_{λ} < 2.5(95% CI)

~50% accuracy on κ_{λ} in one experiment

Remark

- No one(?) believe we can access to self-coupling even HL-LHC at the beginning
- A lot of improvements during Run2
 - b-tagging and boosted bb tagging
 - ML technique in the analysis (cut-&-count → ML shape fit)
 - →Upper limit on HH production(95% CL) 2.4×SM(3.4×SM)

 \rightarrow Constraint on κ_{λ}

 $-0.6 < \kappa_{\lambda} < 6.6$

HH already interesting phase in Run3

- Further improvements are needed
 - Additional production/decay modes
 - Improvement of T ID and b-tagging, boosted bb/TT tagging
 - ➔ Collaborate to development ?

Reference

- ATLAS
 - HH→4b: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-03/</u>
 - VHH: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-31/
 - HH→bbtt: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-40/</u>
 - HH→4b reso: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-41/</u>
 - HH→bbγγ: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-34/</u>
 - boosted di-т: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-22/</u>
 - HH→bblvlv: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-33/</u>
 - H+HH Combination: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-03/
 - Prospect: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-053/
- CMS
 - HH→2b+lep: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-004/index.html</u>
 - HH→4W, WWтт, 4т: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-21-</u> 002/index.html
 - HH→2b2T: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-010/index.html</u>
 - HH→4b: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-005/index.html</u>
 - HH→2b2γ: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-018/index.html</u>
 - HH→bbZZ: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-18-013/index.html</u>
 - HH→WWγγ: <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-21-014/index.htm/</u>
 - Combinaton: http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html

Backup

HH→bbyy (non resonant) detail

- Object and Event Selectin
 - Photon
 - Tight ID
 - $Iso_{calo} < 0.065 * E_T$, $Iso_{Trk} < 0.05 * E_T$
 - b-jet
 - $p_T > 25 \text{ GeV}, |y| < 4.4$
 - DL1r 77% WP (light rejection 130, c-jet rejection 4.9)
 - 105 < $m_{\gamma\gamma}$ < 160 GeV
 - At least 2 photon
 - $\frac{p_T^{1st}}{m_{\gamma\gamma}} > 0.35, \frac{p_T^{2nd}}{m_{\gamma\gamma}} > 0.35$
 - Expect 2 b-jets
 - b-jet energy correction (muon-in-jet, pT average correction)
 - N_{jets} < 6

Event categorization $m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} - m_{bb} - m_{\gamma\gamma} + 250 \text{ GeV} <(>)$ 350 GeV BDT score: 2 (tight/loose) for each

Variable	Definition			
Photon-related kinematic variables				
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of each of the two photons divided by the diphoton invariant mass $m_{\gamma\gamma}$			
η and ϕ	Pseudorapidity and azimuthal angle of the leading and subleading photon			
Jet-related kinematic variables				
<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (60%, 70%, or 77%) that the jet passes			
p_{T},η and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score			
$p_{\mathrm{T}}^{b\bar{b}},\eta_{b\bar{b}}$ and $\phi_{b\bar{b}}$	Transverse momentum, pseudorapidity and azimuthal angle of the <i>b</i> -tagged jets system			
$m_{b\bar{b}}$	Invariant mass of the two jets with the highest <i>b</i> -tagging score			
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event			
Single topness	For the definition, see Eq. (1)			
Missing transverse momentum variables				
$E_{\mathrm{T}}^{\mathrm{miss}}$ and ϕ^{miss}	Missing transverse momentum and its azimuthal angle			

BDTs do not lead to the bias in myy

HH→bbyy (non resonant) detail

• BDT score (2 signal regions for each)

- Background estimation
 - main background γγ+jets(bb)
 - γ+jets fake
 - Single Higgs

2023/2/22

HH→bbyy (non resonant) detail

Mass resolution (σ_{DSCB}): 1.3-1.6 GeV

Signal Region

26

2nd ILC-J Physics WG meeting

HH→bbtt (non-resonant) Detail

- Main event selection
 - Two decay modes: $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$
 - Different triggers for each category
 - $\tau_{had} \tau_{had}$: single, double tau trigger
 - + $\tau_{lep}\tau_{had}$: single lepton and lep+tau trigger
 - 2 b-tagged jets
 - $m_{\tau\tau}$ > 60 GeV, m_{bb} < 150 GeV
- MVA (BDT for $T_{had}T_{had}$, NN for $T_{lep}T_{had}$)
 - Final discriminant
 - Use both H \rightarrow TT and H \rightarrow bb information and m_{HH}
- Background
 - Estimate in Z+bb (Z→ee/µµ) CR
 - Fake tau background (ttbar, multi-jet): estimate by data-driven way and MC

Variable	$ au_{ ext{had}} au_{ ext{had}}$	$ au_{ m lep} au_{ m had}~ m SLT$	$ au_{ m lep} au_{ m had}~ m LTT$
<i>m_{HH}</i>	1	1	1
$m_{\tau\tau}^{\text{MMC}}$	1	1	1
m _{bb}	1	1	1
$\Delta R(au, au)$	1	1	1
$\Delta R(b,b)$	✓	1	
$\Delta p_{ m T}(\ell, au)$		1	1
Sub-leading <i>b</i> -tagged jet $p_{\rm T}$		1	
m_{T}^W		1	
$E_{\mathrm{T}}^{\mathrm{miss}}$		1	
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality		1	
$\Delta \phi(\ell au, bb)$		1	
$\Delta \phi(\ell, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1
$\Delta \phi(\tau \tau, \mathbf{\hat{p}}_{\mathrm{T}}^{\mathrm{miss}})$			1
S _T			✓

X→HH→bbrr (Resonant excess)

- Found mild and broad excess around 1 TeV in X→HH→bbtt resonance search
- Both T_{had}T_{had}, T_{lep}T_{had} observed in the same region
 - Local significance 3.1σ (2.0σ for global) at 1 TeV

H+HH combination

- H+HH combination
- Simultaneous fit can constraint k_t and k_λ (Not possible in only HH anaysis)

NLO EW correction

- Inclusive cross section: ~1.2% difference
- differential distribution difference: ~2% (lowpTH, m(ZH)

• VBF

- Inclusive cross section: 0.6% difference
- differential: at most ~0.7%

700

boosted H→TT tagger

- Standard Reco-efficiency decreased in high p_т di-т
- di-τ identification with two sub-jets (ΔR=0.2) in Large R jet (ΔR=1.0)
- BDT is built to discriminate "ditau" from background (e.g. g→qq) (not tau-by-tau)
 - Input: p_T ratio (p_T^{subj}/p_T^{LRJ})and iso/τ track, angle information

3′

2023/2/22

Higgs decay branching ratio

- Higgs boson decays to other SM particles
 - Observed Higgs mass(~125 GeV) is experimentally really good
 - Higgs boson is able to decay various particles
 - Property measurement with different decay modes

bb	WW	gg	тт	сс	ZZ
58%	21%	8.2%	6.3%	6 2.9%	2.6%
γγ	Ζγ	μ	μ		
0.23%	0.15	% 0	.022%		

Higgs Production at LHC

• Gluon-fusion process is dominant at LHC (Gluon collider!!)

 Higgs physics strategy is built by the combination of production and decay (can not observe all Higgs events experimentally!!)

Lots of QCD background, not triggerable, detector coverage...

Higgs combined Results ~Production/Decay~

 Main Production channels and decay modes are already observed in Run1 and Run2 data

No any significant deviation from SM (10-20% precision for main channels)

Higgs combined results ~Coupling~

- Coupling modifier κ_t , κ_b , κ_τ , κ_μ , κ_W , κ_Z (k_c) (measured coupling normalized to SM)
- Precision is 7-11% for top, W/Z, bottom, τ, ~30% for μ
 - Yukawa coupling works well in 10³ different scale (O(100 MeV) ~ O(100 GeV)!!
 - Higgs boson builds generation of quark and lepton

